Broadcasting of entanglement via orthogonal and non-orthogonal state-dependent cloners

  • Manish Kumar Shukla
  • Indranil Chakrabarty
  • Sourav ChatterjeeEmail author


In this work, we extensively study the problem of broadcasting of entanglement as state-dependent versus state-independent cloners. We start by re-conceptualizing the idea of state-dependent quantum cloning machine (SD-QCM), and in that process, we introduce different types of SD-QCMs, namely orthogonal and non-orthogonal cloners. We derive the conditions for which the fidelity of these cloners will become independent of the input state. We note that such a construction allows us to maximize the cloning fidelity at the cost of having partial information of the input state. In the discussion on broadcasting of entanglement, we start with a general two-qubit state as our resource and later we consider a specific example of Bell diagonal state. We apply both state-dependent and state-independent cloners (orthogonal and non-orthogonal), locally and non-locally, on input resource state and obtain a range for broadcasting of entanglement in terms of the input state parameters. Our results highlight several instances where the state-dependent cloners outperform their state-independent counterparts in broadcasting entanglement. Our study provides a comparative perspective on the broadcasting of entanglement via cloning in two-qubit scenario, when we have some knowledge of the resource ensemble versus a situation when we have no such information.


Cloning Broadcasting Entanglement 



S.C. thanks Prof. Mark M. Wilde for his insightful suggestions. S.C. acknowledges the internship grant from Erlangen Graduate School in Advanced Optical Technologies (SAOT) for supporting the research work as an intern at IIIT, Hyderabad and HRI, Allahabad, India.


  1. 1.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Einstein, A.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum cryptography. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984) pp. 175–179Google Scholar
  6. 6.
    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Sazim, S., Chiranjeevi, V., Chakrabarty, I., Srinathan, K.: Retrieving and routing quantum information in a quantum network. Quant. Inf. Proc. 14, 4651 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channels. arXiv preprint arXiv:1012.5570 (2010)
  11. 11.
    Ray, M., Chatterjee, S., Chakrabarty, I.: Sequential quantum secret sharing in a noisy environment aided with weak measurements. Eur. Phys. J. D 70, 114 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bennett, C.H., Wiesner, S.J.: Communication via one and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nepal, R., Prabhu, R., Sen De, A., Sen, U.: Maximally-dense-coding-capable quantum states. Phys. Rev. A 87, 032336 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Sazim, S., Chakrabarty, I.: A study of teleportation and super dense coding capacity in remote entanglement distribution. Eur. Phys. J. D 67, 174 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164 (2000)ADSGoogle Scholar
  23. 23.
    Pati, A.K., Sanders, B.C.: No-partial erasure of quantum information. Phys. Lett. A 359, 31 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Chattopadhyay, I., Choudhary, S.K., Kar, G., Kunkri, S., Sarkar, D.: No-flipping as a consequence of no-signalling and non-increase of entanglement under LOCC. Phys. Lett. A 351, 384 (2006)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Chakrabarty, I.: Impossibility of partial swapping of quantum information. Int. J. Quant. Inf. 5, 605 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Zhou, D.L., Zeng, B., You, L.: Quantum information cannot be split into complementary parts. Phys. Lett. A 352, 41 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creating a superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Bužek, V., Hillery, M.: Quantum copying: beyond the no cloning theorem. Phys. Rev. A 54, 1844 (1996)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Bužek, V., Hillery, M.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81, 5003 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Bruß, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett. 84, 4497 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Cerf, N.J.: Asymmetric quantum cloning machines in any dimension. J. Mod. Opt. 47, 187 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Adhikari, S., Choudhury, B.S., Chakrabarty, I.: Broadcasting of inseparability. J. Phys. A 39, 8439 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two non orthogonal quantum states via weak measurements. Phys. Rev. A 99, 012324 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Ghiu, I.: Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the “many-to-many” communication protocol. Phys. Rev. A 67, 012323 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Gruska, J.: Quantum entanglement as a new information processing resource. New Gener. Comput. 21, 279 (2003)zbMATHCrossRefGoogle Scholar
  40. 40.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    White, A.G., James, D.F., Eberhard, P.H., Kwiat, P.G.: Non maximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83, 3103 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Jain, A., Chakrabarty, I., Chatterjee, S.: Asymmetric broadcasting of entanglement and correlations. Phys. Rev. A 99, 022315 (2019)ADSCrossRefGoogle Scholar
  45. 45.
    Bužek, V., Vedral, V., Plenio, M.B., Knight, P.L., Hillery, M.: Broadcasting of entanglement via local copying. Phys. Rev. A 55, 3327 (1997)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Bandyopadhyay, S., Kar, G.: Broadcasting of entanglement and universal quantum cloners. Phys. Rev. A 60, 3296 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. General 34, 6899 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Chatterjee, S., Sazim, S., Chakrabarty, I.: Broadcasting of quantum correlations: possibilities and impossibilities. Phys. Rev. A 93, 042309 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Lang, M.D., Caves, C.M.: Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Bužek, V., Hillery, M.: Universal optimal cloning of qubits and quantum registers. In: Quantum Computing and Quantum Communications. Springer, pp. 235–246 (1999)Google Scholar
  51. 51.
    Sharma, U.K., Chakrabarty, I., Shukla, M.K.: Broadcasting quantum coherence via cloning. Phys. Rev. A 96, 052319 (2017)CrossRefGoogle Scholar
  52. 52.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Horodecki, M.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Chitambar, E., Leung, D., Mancinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328, 303 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Manish Kumar Shukla
    • 1
  • Indranil Chakrabarty
    • 2
  • Sourav Chatterjee
    • 1
    • 3
    • 4
    Email author
  1. 1.Center for Computational Natural Sciences and BioinformaticsInternational Institute of Information Technology-HyderabadGachibowliIndia
  2. 2.Center for Security, Theory and Algorithmic ResearchInternational Institute of Information Technology-HyderabadGachibowliIndia
  3. 3.SAOT, Erlangen Graduate School in Advanced Optical TechnologiesErlangenGermany
  4. 4.Raman Research InstituteBangaloreIndia

Personalised recommendations