Advertisement

Optically controlled quantum gates for three spin qubits in quantum dot–microcavity coupled systems

  • Nam-Chol KimEmail author
  • Song-Il Choe
  • Myong-Chol Ko
  • Ju-Song Ryom
  • Nam-Chol Ho
Article
  • 41 Downloads

Abstract

We investigate theoretically the possibility of achieving feasible solid-state quantum computing by compactly constructing a set of two or three quantum gates on stationary electron spin qubits, including the controlled NOT gate, Toffoli gate and Fredkin gate. In our schemes, both of the target qubits and control qubits are all encoded on the confined electron spins in quantum dots embedded in optical microcavities with two partially reflective mirrors. In this paper, the schemes are based on spin selective photon reflection from the microcavity and are achieved in deterministic ways by the sequential detection of the auxiliary photons. The feasibilities of the proposed schemes are estimated by high average fidelities of the gates which are achievable in both the weak coupling and the strong coupling regimes. Under the present technology, our proposed schemes are feasible, opening the promising perspectives for constructing a solid-state quantum computation and quantum information processing.

Keywords

Quantum gate Microcavity Quantum dot Electron spin Fidelity 

Notes

Acknowledgements

This work was supported by the National Program on Key Science Research of DPR of Korea (Grant No. 131-00).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Monz, T., et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 084–092 (2003)MathSciNetGoogle Scholar
  8. 8.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Cory, D.G., et al.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Rauschenbeutel, A., et al.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Xue, Z.Y., Zhu, S.L., You, J.Q., Wang, Z.D.: Implementing topological quantum manipulation with superconducting circuits. Phys. Rev. A 79, 040303(R) (2009)ADSCrossRefGoogle Scholar
  20. 20.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Ciorga, M., et al.: Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Elzerman, J.M., et al.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Petta, J.R., et al.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Greilich, A.D., et al.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Press, D., et al.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Atature, M., et al.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Atatüre, M., et al.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)CrossRefGoogle Scholar
  28. 28.
    Hanson, R., et al.: Single-shot read out of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Chen, P.C., Piermarocchi, C., Sham, L.J., Gammon, D., Steel, D.G.: Theory of quantum optical control of a single spin quantum dot. Phys. Rev. B 69, 075320 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Peter, E., et al.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a doublesided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Brunner, N., Young, A.B., Hu, C.Y., Rarity, J.G.: Proposal for a loophole-free bell test based on spin-photon interaction in cavities. New J. Phys. 15, 105006 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Young, A.B., Hu, C.Y., Rarity, J.G.: Generating entanglement with low-Q factor microcavities. Phys. Rev. A 87, 012332 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Ren, B.C., Wei, H.R., Deng, F.G.: Laser, Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Phys. Lett. 10, 095202 (2013)Google Scholar
  42. 42.
    Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)CrossRefGoogle Scholar
  43. 43.
    Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 15, 17671 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Han, Xue, Shi, Hu, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Sci. Rep. 5, 12790 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou, Yeon, Kyu-Hwang: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Phys. Rev. A 87, 062337 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Guo, Qi, Cheng, Liu-Yong, Chen, Li, Wang, Hong-Fu, Zhang, Shou: Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities. Phys. Rev. A 90, 042327 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Shi, Hu, Cui, Wen-Xue, Wang, Dong-Yang, Bai, Cheng-Hua, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–R1769 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Fischer, J., Trif, M., Coish, W., Loss, D.: Spin interaction, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Toffoli T, Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science, vol. 84, pp. 632–644. Springer (1985)Google Scholar
  54. 54.
    Shende, V., Markov, I.L., Bullock, S.: Synthesis of quantum logic circuits. IEEE Trans. Comput Aided Des. 25(6), 100 (2006)CrossRefGoogle Scholar
  55. 55.
    Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Brunner, D., et al.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)zbMATHCrossRefGoogle Scholar
  59. 59.
    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    Young, A.B., Oulton, R., Hu, C.Y., Thijssen, A.C.T., Schneider, C., Reitzenstein, S., Kamp, M., Hofling, S., Worschech, L., Forchel, A., Rarity, J.G.: Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Loo, V., Lanco, L., Lemaˆıtre, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett. 97, 241110 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Shende, V.V., Markov, I.L.: On the CNOT-cost of Toffoli gate. Quantum Inf. Comput. 9, 0461–0468 (2009)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Opt. Soc. Am. B 26, 2440 (2009)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Langbein, W., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    Kimble, H.J.: In Cavity Quantum Electrodynamics. Academic, San Diego (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  2. 2.Faculty of PhysicsUniversity of SciencePyongyangDemocratic People’s Republic of Korea

Personalised recommendations