Unidimensional continuous-variable quantum key distribution with noisy source

  • Tianyi Wang
  • Lun Li
  • Ming Li
  • Xu Wang
  • Anjiang Lu
  • Damin ZhangEmail author
  • Zhengping Zhang


We investigate the security of unidimensional continuous-variable quantum key distribution with source noise at the sender. The source noise is ascribed to the legitimate sides rather than the eavesdropper and modeled as a thermal noise coupled with the signal mode through a beam splitter. The physicality bound and expressions of secret key rate are derived against collective entangling cloner attacks. Simulation results show that with source noise, the security bound of unidimensional protocol can be tightened. Moreover, proper source noise enlarges the security region to a wider range of parameters, thus eliminates potential eavesdropping threats and enhances the feasibility of unidimensional protocol.


Quantum key distribution Continuous variable Unidimensional Source noise 



The work is supported in part by the Natural Science Foundation of China (No. 61865002), in part by the Major Project of Guizhou Province (No. [2016]3022), in part by the Science & Technology Cooperation Project of Guizhou Province (No. [2014]7002, No. [2016]7431) and in part by the Scientific Research Foundation for Talent Introduced in Guizhou University (No. [2015]45).


  1. 1.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dus̆ek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Renner, R., Cirac, J.I.: de finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Lodewyck, J., Bloch, M., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y.C., Li, Z., Chen, Z., et al.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gehring, T., Jacobsen, C.S., Andersen, U.L.: Single-quadrature continuous-variable quantum key distribution. Quantum Inf. Comput. 16, 1081–1095 (2016)MathSciNetGoogle Scholar
  17. 17.
    Wang, X., Liu, W., Pu, W., Li, Y.: Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 95, 062330 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77, 022310 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Usenko, V., Filip, R.: Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 81, 022318 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177–183 (1973)Google Scholar
  22. 22.
    Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Inf. 4, 21 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tianyi Wang
    • 1
  • Lun Li
    • 1
  • Ming Li
    • 2
    • 3
  • Xu Wang
    • 1
  • Anjiang Lu
    • 1
  • Damin Zhang
    • 1
    Email author
  • Zhengping Zhang
    • 1
  1. 1.College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina
  2. 2.Tianjin Key Laboratory of Wireless Mobile Communications and Power TransmissionTianjin Normal UniversityTianjinChina
  3. 3.College of Electronic and Communication EngineeringTianjin Normal UniversityTianjinChina

Personalised recommendations