Measurement-device-independent quantum key distribution with uncharacterized coherent sources

  • Guo-Dong KangEmail author
  • Qing-Ping Zhou
  • Mao-Fa Fang


Measurement-device-independent quantum key distribution (MDI-QKD) is proposed to close all possible side channel detector attacks. The security of the original proposal relies on the assumption that the legitimate users can characterize their sources exactly, which might not be satisfied in practice. Later, some MDI-QKD protocols with uncharacterized qubit sources are proposed to remove the assumption that legitimate users must characterize their encoding states. Here we propose a MDI-QKD with uncharacterized coherent sources. The assumption is that legitimate users only ensure that sources, for encoding, are coherent sources (can be expressed as a mixture of Fock states), while the accuracy of the encoding operations and the intensity of the coherent sources cannot be characterized exactly by them. Based on this assumption, we derived the formulas of the security bounds for it under collective attacks, and simulation results of the security bounds are also presented by employing parameters of current QKD technology. It shows that the lower bound of performance can cover long distances.


Quantum key distribution Measurement-device-independent Uncharacterized coherent sources 



The work was supported by the National Natural Science Foundation of China under Grant No. 11464015, the Natural Science Foundation of Hunan Province under Grant No. 14jj6035 and the Science Research Foundation of Education Department of Hunan Province under Grant Nos. (14B147,18C0585).


  1. 1.
    Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADSGoogle Scholar
  4. 4.
    Mayers, D.: Advances in Cryptology-CRYPTO’96, pp. 343–357. Springer, Berlin (1996)zbMATHGoogle Scholar
  5. 5.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSGoogle Scholar
  6. 6.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.G.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–200 (2001)ADSzbMATHGoogle Scholar
  7. 7.
    Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 9–13 (2018)Google Scholar
  8. 8.
    Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, F.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, Rong, Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)ADSGoogle Scholar
  9. 9.
    Makarov, V., Anisimov, A., Skaar, J.: Erratum: effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 78(1), 011905–011915 (2008)Google Scholar
  10. 10.
    Makarov, V., Skaar, J.: Fakes states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 8(67), 622–635 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7(12), 73–82 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A 78(4), 042333–042337 (2008)ADSGoogle Scholar
  13. 13.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)ADSGoogle Scholar
  14. 14.
    Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)ADSGoogle Scholar
  15. 15.
    Tang, Y.-L., Yin, H.-L., Ma, X., Fung, C.-H.F., Liu, Y., Yong, H.-L., Chen, T.-Y., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Source attack of decoy-state quantum key distribution using phase information. Phys. Rev. A 88(2), 022308–022319 (2013)ADSGoogle Scholar
  16. 16.
    Mayers, D., Yao, A.: In FOCS, 39th Annual Symposium on Foundations of Computer Science. IEEE, Computer Society Press, Los Alamitos, p. 503 (1998)Google Scholar
  17. 17.
    Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405–120408 (2006)ADSzbMATHGoogle Scholar
  18. 18.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501–230504 (2007)ADSGoogle Scholar
  19. 19.
    McKague, M., Mosca, M.: In Proceedings of the Fifth Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC’10, pp. 113–130. Springer, Berlin (2011)zbMATHGoogle Scholar
  20. 20.
    Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3(3), 031006–031016 (2013)Google Scholar
  21. 21.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503–130519 (2012)ADSGoogle Scholar
  22. 22.
    Kaltenbaek, R., Prevedel, R., Aspelmeyer, M., Zeilinger, A.: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79(4), 040302–040305 (2009)ADSGoogle Scholar
  23. 23.
    Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651–2658 (1996)ADSMathSciNetGoogle Scholar
  24. 24.
    Rubenok, A., Slater, J., Chan, P., Lucio-Martinez, I., Tittel, W.: A quantum key distribution system immune to detector attacks. Arxiv preprint arXiv:1204.0738 (2012)
  25. 25.
    T, Ferreira da Silva, Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporão, G.P., von der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303–052309 (2013)ADSGoogle Scholar
  26. 26.
    Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Zhang, Q., Pan, J.-W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502–130505 (2013)ADSGoogle Scholar
  27. 27.
    Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503–190506 (2014)ADSGoogle Scholar
  28. 28.
    Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.Q., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.-J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501–190515 (2016)ADSGoogle Scholar
  29. 29.
    Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)ADSGoogle Scholar
  30. 30.
    Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323–062334 (2018)ADSGoogle Scholar
  31. 31.
    Yin, H.L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 3045–3057 (2019)ADSGoogle Scholar
  32. 32.
    Yin, Z.Q., Fung, C.-H.F., Ma, X., Zhang, C.-M., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88(6), 062322–062330 (2013)ADSGoogle Scholar
  33. 33.
    Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95(6), 062313–062316 (2017)ADSGoogle Scholar
  34. 34.
    Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 062319–062330 (2012)ADSGoogle Scholar
  35. 35.
    Zhao, Y., Qi, B., Lo, H.-K.: Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77(5), 052327–052356 (2008)ADSGoogle Scholar
  36. 36.
    Liu, Y., Zhao, Qi, Li, M.-H., Guan, J.-Y., Zhang, Y.-B., Bai, B., Zhang, W.-J., Liu, W.-Z., Wu, C., Yuan, X., Li, H., Munro, W.J., Wang, Z., You, L.-X., Zhang, J., Ma, X., Fan, J.-Y., Zhang, Q., Pan, J.-W.: Device-independent quantum random-number generation. Nature 562, 548–551 (2018)ADSGoogle Scholar
  37. 37.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001) ADSGoogle Scholar
  39. 39.
    Sangouard, N., Simon, C., Minar, J., Zbinden, H., Riedmatten, H.D., Gisin, N.: Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76(5), 050301–050304 (2007)ADSGoogle Scholar
  40. 40.
    Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307–042323 (2012)ADSGoogle Scholar
  41. 41.
    Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504–230507 (2005)ADSGoogle Scholar
  42. 42.
    Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901–057904 (2003)ADSGoogle Scholar
  43. 43.
    Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326–012356 (2005)ADSGoogle Scholar
  44. 44.
    Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503–230506 (2005)ADSGoogle Scholar
  45. 45.
    Wang, X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72(1), 012322–012333 (2005)ADSGoogle Scholar
  46. 46.
    Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5), 431–458 (2007)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Lo, H.-K.: Getting something out of nothing. Quantum Inf. Comput. 5(4), 413–418 (2005)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11(4), 045018–045029 (2009)ADSMathSciNetGoogle Scholar
  49. 49.
    Ma, X., Fung, C.-H.F., Boileau, J.-C., Chau, H.: Universally composable and customizable post-processing for practical quantum key distribution. Comput. Secur. 30(4), 172–177 (2011)Google Scholar
  50. 50.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Oemer, B., Fuerst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nature Phys. 3, 481–486 (2007)ADSGoogle Scholar
  51. 51.
    Ma, X., Lo, H.-K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10(7), 073018–073039 (2008)ADSGoogle Scholar
  52. 52.
    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADSGoogle Scholar
  53. 53.
    Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60(10), 3071–3079 (2012)Google Scholar
  54. 54.
    Derka, R., Buzk, V., Ekert, A.K.: Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement. Phys. Rev. Lett. 80(8), 1571–1575 (1998)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Csiszar, I., KÄorner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78(3), 032302–032309 (2008)ADSGoogle Scholar
  57. 57.
    Beaudry, N.J., Moroder, T., Lutkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101(9), 093601–093604 (2008)ADSzbMATHGoogle Scholar
  58. 58.
    Ma, X., Lutkenhaus, N.: Improved data post-processing in quantum key distributions and application to loss thresholds in device independent QKD. Quantum Inf. Comput. 12(34), 203–214 (2012)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Wang, C., Song, X.-T., Yin, Z.-Q., Wang, S., Chen, W., Zhang, C.-M., Guo, G.-C., Han, Z.-F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502–160506 (2015)ADSGoogle Scholar
  60. 60.
    Ma, X., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043–031070 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Software Engineering of Ministry of Education, and School of SoftwareJiShou UniversityZhangjiajieChina
  2. 2.School of Physics and Mechanical and Electrical EngineeringJishou UniversityJishouChina
  3. 3.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaChina

Personalised recommendations