Advertisement

Implementing two-qubit phase gates by exchanging non-Abelian quasiparticles

  • Hao Chen
  • Chao Kong
  • Kuo Hai
  • Wenhua HaiEmail author
Article
  • 13 Downloads

Abstract

We study how to implement two-qubit phase gates by exchanging non-Abelian quasiparticles. We firstly investigate quantum dynamics of a single trapped ion with two stable electronic ground states and with a larger energy gap from the rest of the spectrum, which is held in the Lamb–Dicke regime of a driven optical lattice. A set of degenerate Schrödinger’s cat states with the same expected energy is found, and wavepackets of the probability densities occupying different spin states are identical to the quasiparticles obeying the proposed non-Abelian interchange. The controlled transitions between different instantaneous degenerate ground states are illustrated for an array of \(\delta \)-shaped laser pulses. Making use of the mathematical equivalence between the single-ion system and the center-of-mass system of two trapped ions, the two-qubit phase gates are implemented by exchanging the non-Abelian quasiparticles of the center-of-mass motion via the periodic state-dependent forces. Such phase gates depend on geometric and topological properties of the system, which makes them resistant to certain errors. The results can be justified with the current experimental capability and may be extended to an array of weakly coupled trapped-ion pairs for demonstrating the non-Abelian statistics of the quasiparticles and for encoding the topological qubits.

Keywords

Two-qubit phase gate Non-Abelian quasiparticle Topological phase Instantaneous degenerate ground states Wavepacket of probability density State-dependent force 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11475060 and 11204077.

References

  1. 1.
    Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Stern, A.: Non-Abelian states of matter. Nature (London) 464, 187 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Kauffman, L.H., Lomonaco, S.J.: Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum Inf. Process. 17, 201 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sarma, S.D., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Ivanov, D.A.: Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Elliott, S.R., Franz, M.: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Ben-Shach, G., Laumann, C.R., Neder, I., Yacoby, A., Halperin, B.I.: Detecting non-Abelian anyons by charging spectroscopy. Phys. Rev. Lett. 110, 106805 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Stern, A., Halperin, B.I.: Proposed experiments to probe the non-Abelian \(\nu =5/2\) quantum Hall state Phys. Rev. Lett. 96, 016802 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Bonderson, P., Shtengel, K., Slingerland, J.K.: Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Feldman, D.E., Kitaev, A.: Detecting non-Abelian statistics with an electronic Mach–Zehnder interferometer. Phys. Rev. Lett. 97, 186803 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Galindo, C., Rowell, E., Wang, Z.H.: On acyclic anyon models. Quantum Inf. Process. 17, 245 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mong, R.S.K., Zaletel, M.P., Pollmann, F., Papić, Z.: Fibonacci anyons and charge density order in the \(12/5\) and \(13/5\) quantum Hall plateaus. Phys. Rev. B 95, 115136 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Pu, H., Maenner, P., Zhang, W.P., Ling, H.Y.: Adiabatic condition for nonlinear systems. Phys. Rev. Lett. 98, 050406 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hai, W., Xie, Q., Fang, J.: Quantum chaos and order based on classically moving reference-frames. Phys. Rev. A 72, 012116 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Chen, H., Tan, J.T., Hai, K., Zhang, X.L., Hai, W.: Controlling instability and phase hops of a kicked two-level ion in Lamb-Dicke regime. Eur. Phys. J. D 69, 278 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Leggett, A.J.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Li, L., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton-on-plane-wave solutions for two-component Bose–Einstein condensates. Phys. Rev. E 73, 066610 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gu, F.L., Liu, J., Mei, F., Jia, S.T., Zhang, D.W., Xue, Z.Y.: Synthetic spin-orbit coupling and topological polaritons in Janeys–Cummings lattices. npj Quantum Information 5, 36 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    Abdumalikov Jr., A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature (London) 496, 482 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Golubev, N.V., Kuleff, A.I.: Control of populations of two-level systems by a single resonant laser pulse. Phys. Rev. A 90, 035401 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Chen, H., Kong, C., Hai, W.: Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion. Results Phys. 9, 424 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272, 1131 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kienzler, D., Fluhmann, C., Negnevitsky, V., Lo, H.Y., Marinelli, M., Nadlinger, D., Home, J.P.: Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Moore, F.L., Robinson, J.C., Bharucha, C.F., Williams, P.E., Raizen, M.G.: Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos. Phys. Rev. Lett. 73, 2974 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Mizrahi, J., Senko, C., Neyenhuis, B., Johnson, K.G., Campbell, W.C., Conover, C.W.S., Monroe, C.: Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett. 110, 203001 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 1 (2013)zbMATHCrossRefGoogle Scholar
  32. 32.
    Zakrzewski, J.: Analytic solutions of the two-state problem for a class of chirped pulses. Phys. Rev. A 32, 3748 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    Kapit, E., Ginsparg, P., Mueller, E.: Non-Abelian braiding of lattice bosons. Phys. Rev. Lett. 108, 066802 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Yu, L.W.: Local unitary representation of braids and N-qubit entanglements. Quantum Inf. Process. 17, 44 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Hu, S., Cui, W.X., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces. Quantum Inf. Process. 15, 3651 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Hardy, L., Song, D.D.: Universal manipulation of a single qubit. Phys. Rev. A 63, 032304 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Cui, S.X., Hong, S.M., Wang, Z.H.: Universal quantum computation with weakly integral anyons. Quantum Inf. Process. 14, 2687C2727 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Palmero, M., Martínez-Garaot, S., Leibfried, D., Wineland, D.J., Muga, J.G.: Fast phase gates with trapped ions. Phys. Rev. A 95, 022328 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Malinovsky, V.S., Sola, I.R., Vala, J.: Phase-controlled two-qubit quantum gates. Phys. Rev. A 89, 032301 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Sorensen, A., Molmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404, 256 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Li, H.Z.: Global Properties of Simple Physical Systems, Chapter 8 Topological Analyses of Geometrical Phases. Shanghai Scientific and Technical Publishers, Shanghai (1998). (in Chinese)Google Scholar
  47. 47.
    Zeng, J.Y.: Quantum Mechanics (Vol. 2), Chapter 4 Phase in Quantum Mechanics. Science Press, Beijing (2000). (in Chinese)Google Scholar
  48. 48.
    Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum gates with hot trapped ions. Phys. Rev. Lett. 81, 1322 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Schuetz, M.J.A., Giedke, G., Vandersypen, L.M.K., Cirac, J.I.: High-fidelity hot gates for generic spin-resonator systems. Phys. Rev. A 95, 052335 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Gardiner, S.A., Cirac, J.I., Zoller, P.: Quantum chaos in an ion trap: the delta-kicked harmonic oscillator. Phys. Rev. Lett. 79, 4790 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    Berman, G.P., James, D.F.V., Hughes, R.J., Gulley, M.S., Holzscheiter, M.H., López, G.V.: Dynamical stability and quantum chaos of ions in a linear trap. Phys. Rev. A 61, 023403 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Wu, Y., Yang, X.X.: Jaynes-Cummings model for a trapped ion in any position of a standing wave. Phys. Rev. Lett. 78, 3086 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    Lu, G., Hai, W., Xie, Q.: Controlling quantum motions of a trapped and driven electron: an exact analytic treatment. J. Phys. A 39, 401 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Chen, Q., Hai, K., Hai, W.: Controlling quantum motions of a Paul trapped ion via a double rf driving. J. Phys. A 43, 455302 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Hai, K., Luo, Y., Chong, G., Chen, H., Hai, W.: Ultrafast generation of an exact Schrödinger-cat state. Quantum Inf. Comput. 17, 456 (2017)MathSciNetGoogle Scholar
  57. 57.
    Xu, Z.H., Li, L.H., Chen, S.: Fractional topological states of dipolar fermions in one-dimensional optical superlattices. Phys. Rev. Lett. 110, 215301 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Lang, L.J., Cai, X.M., Chen, S.: Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett. 108, 220401 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Liu, H.D., Yi, X.X., Fu, L.B.: Berry phase and Hannays angle in the BornCOppenheimer hybrid systems. Ann. Phys. 339, 1 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Ganpathy, M., Shankar, R.: Hamiltonian theories of the fractional quantum Hall effect. Rev. Mod. Phys. 75, 1101 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical Schrödinger kittens for quantum information processing. Sciences 312, 83 (2006)CrossRefGoogle Scholar
  62. 62.
    García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    Greiter, M., Haldane F. D. M., Thomale R.: Non-Abelian Statistics in one dimension: topological momentum spacings and SU(2) level \(k\) fusion rules. arXiv:1905.09728 (2019)
  64. 64.
    Simeonov, L.S., Ivanov, P.A., Vitanov, N.V.: Speeding up conditional quantum logic of trapped ion qubits with overlapping pulses. Phys. Rev. A 89, 012304 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    Duan, L.M.: Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaChina
  2. 2.College of Physics and ElectronicsHunan Institute of Science and TechnologyYueyangChina

Personalised recommendations