A weak limit theorem for a class of long-range-type quantum walks in 1d
Article
First Online:
- 7 Downloads
- 1 Citations
Abstract
We derive the weak limit theorem for a class of long-range-type quantum walks. To do it, we analyze spectral properties of a time evolution operator and prove that modified wave operators exist and are complete.
Keywords
Quantum walks Weak limit theorem Scattering theoryMathematics Subject Classification
46N50 47A40 47B47 60F05Notes
Acknowledgements
The author would like to thank A. Suzuki for various comments and constant encouragements. The author would also like to thank H. Ohno and S. Richard for helpful comments. This work was supported by the Research Institute of Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.
References
- 1.Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)ADSCrossRefGoogle Scholar
- 2.Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp 37–49. ACM, New York (2001)Google Scholar
- 3.Amrein, W.O., de Monvel, A.B., Georgescu, V.: \(C_{0}\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians, of Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)CrossRefGoogle Scholar
- 4.Asch, J., Bourget, O., Joye, A.: Spectral stability of unitary network models. Rev. Math. Phys 27(7), 1530004 (2015)MathSciNetCrossRefGoogle Scholar
- 5.Cantero, M.J., Grümbaum, F.A., Moral, L., Velázquez, L.: One dimensional quantum walks with one defect. Rev. Math. Phys. 24, 1250002 (2012)MathSciNetCrossRefGoogle Scholar
- 6.Childs, A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 7.Chisaki, K., Hamada, M., Konno, N., Segawa, E.: Limit theorems for discrete-time quantum walks on trees. Interdiscip. Inf. Sci. 15, 423–429 (2009)MathSciNetzbMATHGoogle Scholar
- 8.Chisaki, K., Konno, N., Segawa, E.: Limit theorems for the discrete-time quantum walk on a graph with joined half lines. Quantum Inf. Process. 12(3 and 4), 314–333 (2012)MathSciNetzbMATHGoogle Scholar
- 9.Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-particle Systems. Springer, Berlin (1997)CrossRefGoogle Scholar
- 10.Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Limit theorems of a two-phase quantum walk with one defect. Quantum Inf. Comput. 15(15–16), 1373–1396 (2015)MathSciNetGoogle Scholar
- 11.Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Weak limit theorem of a two-phase quantum walk with one defect. Interdiscip. Inf. Sci. 22, 17–29 (2016)MathSciNetGoogle Scholar
- 12.Fuda, T., Funakawa, D., Suzuki, A.: Weak limit theorem for a one-dimensional split-step quantum walk. Rev. Math. Pures Appl. 64(2–3), 157–165 (2019)MathSciNetzbMATHGoogle Scholar
- 13.Fuda, T., Funakawa, D., Suzuki, A.: Localization of a milti-dimensional quantum walk with one defect. Quantum Inf. Process. 16, 203 (2017). https://doi.org/10.1007/s11128-017-1653-4 ADSCrossRefzbMATHGoogle Scholar
- 14.Fuda, T., Funakawa, D., Suzuki, A.: Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations. J. Math. Phys. (2018). https://doi.org/10.1063/1.5035300 MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)ADSCrossRefGoogle Scholar
- 16.Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp 212–219 (1996)Google Scholar
- 17.Gudder, S.P.: Quantum Probability. Probability and Mathematical Statistics. Academic Press Inc., Boston (1988)zbMATHGoogle Scholar
- 18.Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)ADSCrossRefGoogle Scholar
- 19.Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 245–354 (2002)MathSciNetCrossRefGoogle Scholar
- 20.Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. 9(3), 405–418 (2010)MathSciNetCrossRefGoogle Scholar
- 21.Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Sci. Jpn. 57, 1179–1195 (2005)MathSciNetCrossRefGoogle Scholar
- 22.Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Weak limit theorem for a nonlinear quantum walk. Quantum Inf. Process. 17, 215 (2018). https://doi.org/10.1007/s11128-018-1981-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 23.Matsue, K., Matsuoka, L., Ogurisu, O., Segawa, E.: Resonant-tunneling in discrete-time quantum walk. Quantum Stud. Math. Found. 6(1), 35–44 (2019)MathSciNetCrossRefGoogle Scholar
- 24.Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)ADSMathSciNetCrossRefGoogle Scholar
- 25.Morioka, H., Segawa, E.: Detection of edge defects by embedded eigenvalues of quantum walks. Quantum Inf. Process. 18, 283 (2019). https://doi.org/10.1007/s11128-019-2398-z ADSMathSciNetCrossRefGoogle Scholar
- 26.Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum inf. Process. 15(9), 3599–3617 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 27.Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks II. Quantum inf. Process. 1, 2–3 (2017). https://doi.org/10.1007/s11128-017-1741-5 ADSCrossRefGoogle Scholar
- 28.Reed, M., Simon, B.: Methods of Modern Mathematical Physics Scattering Theory, vol. 3. Academic Press, Boston (1980)zbMATHGoogle Scholar
- 29.Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys. 108(2), 331–357 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 30.Richard, S., Suzuki, A., de Aldecoa, R.T.: Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys. (2018). https://doi.org/10.1007/s11005-018-1100-1 CrossRefzbMATHGoogle Scholar
- 31.Richard, S., Tiedra de Aldecoa, R.: New formulae for the wave operators for a rank one interaction. Integral Equ. Oper. Theory 66, 283–292 (2010)MathSciNetCrossRefGoogle Scholar
- 32.Richard, S., Tiedra de Aldecoa, R.: New expressions for the wave operators of Schrödinger operators in \({\mathbb{R}}^3\). Lett. Math. Phys. 103, 1207–1221 (2013)ADSMathSciNetCrossRefGoogle Scholar
- 33.Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3(1), 11–30 (2016)MathSciNetCrossRefGoogle Scholar
- 34.Shikano, Y.: From discrete time quantum walk to continuous time quantum walk in limit distribution. J. Comput. Theor. Nanosci. 10, 1558–1570 (2013)CrossRefGoogle Scholar
- 35.Shor, P.W.: Polynomial time algorithms for prime factorization and discrete algorithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
- 36.Strauch, F.W.: Connecting the discrete and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 37.Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quamtum Inf. Process. 15(1), 103–119 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 38.Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)MathSciNetCrossRefGoogle Scholar
- 39.Wada, K.: Absence of wave operators for one-dimensional quantum walks. Lett. Math. Phys. (2019). https://doi.org/10.1007/s11005-019-01197-5 MathSciNetCrossRefGoogle Scholar
- 40.Watanabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008)ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019