Advertisement

Local quantum uncertainty and interferometric power for a two-qubit system under decoherence channels with memory

  • You-neng GuoEmail author
  • Cheng Yang
  • Qing-long Tian
  • Guo-you Wang
  • Ke Zeng
Article
  • 60 Downloads

Abstract

Via local quantum uncertainty (LQU) and interferometric power (IP) as a measure of nonclassical correlations, we study the dynamics of quantum correlations for two non-interacting qubits passing through decoherence channels where the channels with successive uses are correlated. The effect of three different types of decoherence channels, such as amplitude damping, phase damping, and depolarizing channels, on quantum correlations has been discussed in detail. The explicit analytical expressions of LQU and IP for a class of Bell-diagonal states under these decoherence channels have been derived. Our results show that the behaviors of both LQU and IP exhibit similar variation under the amplitude damping and phase damping channels, with monotonic decay from an increasing decoherence rate, but decay more slowly when the memory coefficient of the channel increases. Compared to the phenomenon of LQU under a depolarizing channel, we find that there exists a sudden change of LQU under both amplitude damping and phase damping channels by choosing proper initial parameters. Finally, we compare the dynamics of LQU with that of IP under decoherence channels. Our results also confirm the amount of quantum correlations measured by LQU is smaller than IP.

Keywords

Local quantum uncertainty Interferometric power Quantum correlations Decoherence channels with memory 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11747107, the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3346), the Project of Science and Technology Plan of Changsha (K1705022 and kc1809023), the Scientific Research Project of Hunan Province Department of Education (Grant No. 18A373) and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1810).

References

  1. 1.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Devetak, I.: Distillation of local purity from quantum states. Phys. Rev. A 71, 062303 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Rajagopal, A.K., Rendell, R.W.: Separability and correlations in composite states based on entropy methods. Phys. Rev. A 66, 022104 (2002)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Slaoui, A., Daoud, M., Ahl Laamara, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Slaoui, A., Shaukat, M.I., Daoud, M., Ahl Laamara, R.: Universal evolution of non-classical correlations due to collective spontaneous emission. Eur. Phys. J. Plus 133, 413 (2018)CrossRefGoogle Scholar
  10. 10.
    Sen, A., Sarkar, D., Bhar, A.: Local quantum uncertainty in two-qubit separable states: a case study. Quantum Inf. Process. 15, 233 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Khedif, Y., Daoud, M.: Local quantum uncertainty and trace distance discord dynamics for two-qubit X states embedded in non-Markovian environment. Int. J. Mod. Phys. B 32, 1850218 (2018)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Jebli, L., Benzimoune, B., Daoud, M.: Local quantum uncertainty for a class of two-qubit X states and quantum correlations dynamics under decoherence. Int. J. Quantum Inf. 15, 1750001 (2017)CrossRefGoogle Scholar
  13. 13.
    Jebli, L., Benzimoune, B., Daoud, M.: Quantum correlations for two-qubit X states through the local quantum uncertainty. Int. J. Quantum Inf. 15, 1750020 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faizi, E., Ahansaz, B.: Local quantum uncertainty of SU(2) invariant states. J. Korean Phys. Soc. 67, 2033 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, S.H., Li, H., Lu, X., Long, G.L.: Closed form of local quantum uncertainty and a sudden change of quantum correlations. arXiv:1307.0576 (2013)
  16. 16.
    Sales, J., Cardoso, W., Avelar, A., Almeida, N.: Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED. Phys. A 443, 399 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, J.L., Wei, J.L., Qin, W.: Examining quantum correlations in the XY spin chain by local quantum uncertainty. Quantum Inf. Process. 14, 1429 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Habiballah, N., Khedif, Y., Daoud, M.: Local quantum uncertainty in XYZ Heisenberg spin models with Dzyaloshinski–Moriya interaction. Eur. Phys. J. D 72, 154 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Slaoui, A., Bakmou, L., Daoud, M., Ahl Laamara, R.: A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 383, 2241 (2019)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Coulamy, I.B., Warnes, J.H., Sarandy, M.S., Saguia, A.: Scaling of the local quantum uncertainty at quantum phase transitions. Phys. Lett. A 380, 1724 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Carrijo, T.M., Avelar, A.T., Celeri, L.C.: Quantum uncertainty in critical systems with three spins interaction. J. Phys. B At. Mol. Opt. Phys. 48, 125501 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    He, Z., Yao, C., Wang, Q., Zou, J.: Measuring non-Markovianity based on local quantum uncertainty. Phys. Rev. A 90, 042101 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Wu, S., Zhang, Y., Yu, C.: Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment. Ann. Phys. 390, 71 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Yu, C.S., Wu, S.X., Wang, X., Yi, X.X., Song, H.S.: Quantum correlation measure in arbitrary bipartite systems. Eur. Phys. Lett. 107, 10007 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Luo, S.: Wigner–Yanase skew information versus quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2003)CrossRefGoogle Scholar
  28. 28.
    Bera, M.N.: Role of quantum correlation in metrology beyond standard quantum limit. arXiv:1405.5357 (2014)
  29. 29.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Macchiavello, C., Massimo Palma, G.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Yeo, Y., Skeen, A.: Time-correlated quantum amplitudedamping channel. Phys. Rev. A 67, 064301 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Arshed, N., Toor, A.: Entanglement-assisted classical capacity of quantum channels with correlated noise. Phys. Rev. A 73, 014304 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Wolf, M., García, D.: Quantum capacities of channels with small environment. Phys. Rev. A 75, 012303 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Benenti, G., D’Arrigo, A., Falci, G.: Enhancement of transmission rates in quantum memory channels with damping. Phys. Rev. Lett. 103, 020502 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    D’Arrigo, A., Benenti, G., Falci, G.: Transmission of classical and quantum information through a quantum memory channel with damping. Eur. Phys. J. D 66, 66 (2012)CrossRefGoogle Scholar
  38. 38.
    Leung, D., Watrous, J.: On the complementary quantum capacity of the depolarizing channel. Quantum 1, 28 (2017)CrossRefGoogle Scholar
  39. 39.
    Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. arXiv:1812.04385 (2018)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic Communication and Electrical EngineeringChangsha UniversityChangshaPeople’s Republic of China
  2. 2.College of Mathematics and Computing ScienceChangsha UniversityChangshaPeople’s Republic of China
  3. 3.College of ScienceHunan University of TechnologyZhuzhouChina

Personalised recommendations