Advertisement

Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication

  • Xiaodong Wu
  • Yijun Wang
  • Sha Li
  • Wei Zhang
  • Duan HuangEmail author
  • Ying Guo
Article
  • 51 Downloads

Abstract

We perform security analysis of a passive measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) protocol with almost no public communication. In the passive MDI-CVQKD protocol, the quantum states are prepared passively by using thermal sources without Gaussian modulations at Alice’s and Bob’s sides. With this technique, Alice and Bob can precisely prepare quantum states to match the high transmission rate in MDI-CVQKD system at the corresponding speed. Here, both asymptotic regime and finite-size regime are considered. In asymptotic case, we derive the security bounds for the protocol against collective attacks, while in finite-size case we show a new conceptual development of passive MDI-CVQKD, namely the final secret key generation can be performed by using almost all raw keys instead of sacrificing part of raw keys for parameter estimation, and thus the improvement performance of passive MDI-CVQKD protocol can be achieved in finite-size scenario.

Keywords

Passive Measurement-device-independent Continuous-variable quantum key distribution Almost no public communication 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61801522) and National Nature Science Foundation of Hunan Province, China (Grant No. 2019JJ40352).

References

  1. 1.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSzbMATHGoogle Scholar
  2. 2.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSGoogle Scholar
  3. 3.
    Takeda, S., Fuwa, M., Van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2014)Google Scholar
  4. 4.
    Gessner, M., Pezzè, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94(2), 020101 (2016)ADSGoogle Scholar
  5. 5.
    Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSGoogle Scholar
  7. 7.
    Huang, P., Huang, J., Zhang, Z., Zeng, G.: Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A 97, 042311 (2018)ADSGoogle Scholar
  8. 8.
    Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238 (2003)ADSGoogle Scholar
  9. 9.
    Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADSGoogle Scholar
  10. 10.
    Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)ADSGoogle Scholar
  11. 11.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)ADSzbMATHGoogle Scholar
  12. 12.
    Yuan, Z.L., Dynes, J.F., Shields, A.J.: Avoiding the blinding attack in QKD. Nat. Photonics 4(12), 800 (2010)ADSGoogle Scholar
  13. 13.
    Huang, J.Z., Kunz, J.S., Jouguet, P., Weedbrook, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A 89(3), 032304 (2014)ADSGoogle Scholar
  14. 14.
    Qin, H.: Saturation attack on continuous-variable quantum key distribution system. Proc. SPIE 8899(2), 88990N (2013)Google Scholar
  15. 15.
    Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne detector blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)Google Scholar
  16. 16.
    Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77(2), 022310 (2008)ADSGoogle Scholar
  17. 17.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution Phys. Rev. Lett. 108(13), 130503 (2012)ADSGoogle Scholar
  18. 18.
    Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)ADSGoogle Scholar
  19. 19.
    Da, S., Ferreira, T., Vitoreti, D., Xavier, G.B., Do Amaral, G.C., Temporao, G.P., Von Der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2013)ADSGoogle Scholar
  20. 20.
    Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)ADSGoogle Scholar
  21. 21.
    Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)ADSGoogle Scholar
  22. 22.
    Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)ADSGoogle Scholar
  23. 23.
    Choi, Y., Kwon, O., Woo, M., Oh, K., Han, S.W., Kim, Y.S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93(3), 032319 (2016)ADSGoogle Scholar
  24. 24.
    Xu, F., Curty, M., Qi, B., Qian, L., Lo, H.K.: Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 9(12), 772 (2015)ADSGoogle Scholar
  25. 25.
    Li, H.W., Yin, Z.Q., Pawłowski, M., Guo, G.C., Han, Z.F.: Detection efficiency and noise in a semi-device-independent randomness-extraction protocol. Phys. Rev. A 91(3), 032305 (2015)ADSGoogle Scholar
  26. 26.
    Li, H.W., Yin, Z.Q., Chen, W., Wang, S., Guo, G.C., Han, Z.F.: Quantum key distribution based on quantum dimension and independent devices. Phys. Rev. A 89(3), 032302 (2014)ADSGoogle Scholar
  27. 27.
    Liao, Q., Wang, Y., Huang, D., Guo, Y.: Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 26(16), 19907 (2018)ADSGoogle Scholar
  28. 28.
    Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9(6), 397 (2015)ADSGoogle Scholar
  29. 29.
    Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(4), 042335 (2014)ADSGoogle Scholar
  30. 30.
    Guo, Y., Liao, Q., Huang, D., Zeng, G.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95(4), 042326 (2017)ADSGoogle Scholar
  31. 31.
    Li, Z., Zhang, Y.C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)ADSGoogle Scholar
  32. 32.
    Zhang, Y.C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)ADSGoogle Scholar
  33. 33.
    Chen, Z., Zhang, Y., Wang, G., Li, Z., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98(1), 012314 (2018)ADSGoogle Scholar
  34. 34.
    Qi, B., Evans, P.G., Grice, W.P.: Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution. Phys. Rev. A 97(1), 012317 (2018)ADSGoogle Scholar
  35. 35.
    Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Passive state preparation in continuous-variable measurement-device-independent quantum key distribution. J. Phys. B 52(13), 135502 (2019)ADSGoogle Scholar
  36. 36.
    Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)ADSGoogle Scholar
  37. 37.
    Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)ADSGoogle Scholar
  38. 38.
    Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)ADSGoogle Scholar
  39. 39.
    Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)ADSGoogle Scholar
  40. 40.
    Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96(4), 042332 (2017)ADSGoogle Scholar
  41. 41.
    Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 17(4), 043027 (2015)ADSGoogle Scholar
  42. 42.
    Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)ADSGoogle Scholar
  43. 43.
    Huang, D., Huang, P., Wang, T., Li, H., Zhou, Y., Zeng, G.: Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)ADSGoogle Scholar
  44. 44.
    Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)ADSGoogle Scholar
  45. 45.
    Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)ADSGoogle Scholar
  46. 46.
    García-Patrón, R.: Quantum Information with Optical Continuous Variables: From Bell Tests to Key Distribution. Universite Libre De Bruxelles, Brussels (2007)Google Scholar
  47. 47.
    Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)ADSGoogle Scholar
  48. 48.
    Zhang, X., Zhang, Y., Zhao, Y., Wang, X., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)ADSGoogle Scholar
  49. 49.
    Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Parameter estimation with almost no public communication for continuous-variable quantum key distribution. Phys. Rev. Lett. 120(22), 220505 (2018)ADSGoogle Scholar
  50. 50.
    Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: CV MDI QKD: composable security against coherent attacks. Phys. Rev. A 97(5), 052327 (2018)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of AutomationCentral South UniversityChangshaChina
  2. 2.School of Computer Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations