Advertisement

Quantum image restoration based on Hudson–Parthasarathy Schrodinger equation

  • Rohit Singh
  • Harish Parthasarathy
  • Jyotsna SinghEmail author
Article
  • 91 Downloads

Abstract

In this paper, we propose a quantum–classical hybrid filtering scheme used for denoising of a classical noisy image field. This includes an iterative procedure of transforming pairs of classical image and noise fields into quantum states using standard classical–quantum conversion and then posing the problem of constructing an optimal unitary operator based on the Hudson–Parthasarathy quantum stochastic calculus. The noisy quantum image state is filtered using an optimum unitary operator followed by quantum–classical conversion of the denoised quantum image state. Finally, filtering of the resultant classical image is performed using the standard median filtering approach. In addition to the proposed algorithm, our work includes a theoretical display of the Schrodinger evolution in the presence of classical randomness. The results demonstrate the marked superiority of our proposed algorithm over the existing classical denoising scheme.

Keywords

Creation–annihilation processes Lindblad operator Hudson–Parthasarathy Schrodinger evolution equation Quantum–classical hybrid filtering (QCHF) Quantum stochastic calculus 

Notes

References

  1. 1.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, pp. 124–134 (1994).  https://doi.org/10.1109/SFCS.1994.365700
  2. 2.
    Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)CrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal quantum Turing machine. Proc. R. Soc. Lond. A400, 97–117 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001).  https://doi.org/10.1103/PhysRevA.64.022307 ADSCrossRefGoogle Scholar
  9. 9.
    Long, G.L., Zhang, W.L., Li, Y.S., Niu, L.: Arbitrary phase rotation of the marked state cannot be used for Grover’s quantum search algorithm. Commun. Theor. Phys. 32, 335–338 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61(4), 042305 (2000).  https://doi.org/10.1103/PhysRevA.61.042305 ADSCrossRefGoogle Scholar
  11. 11.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). Reprint of the 1980 editionCrossRefGoogle Scholar
  12. 12.
    Ai, Q., Li, Y.S., Long, G.L.: Influences of gate operation errors in the quantum counting algorithm. J. Sci. Technol. 21(6), 927–932 (2007)MathSciNetGoogle Scholar
  13. 13.
    Choi, M.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kraus, K.: General state changes in quantum theory. Ann. Phys. 64(2), 311–355 (1971)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Stinespring, W.F.: Positive functions on \(\text{ C }^{*}\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)Google Scholar
  16. 16.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Brasil, C.A., Fanchini, F.F., Napolitano, R.J.: A simple derivation of the Lindblad equation. arXiv:1110.2122v2 [quant-ph] (2012)
  18. 18.
    Mastriani, Mario: Quantum Boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wheeler, N.: Problems at the quantum/classical interface (2001). http://ebookily.org/pdf/problems-at-the-quantum-classical interface-174658500.html
  20. 20.
    Baylis, W.E., Cabrera, R., Keselica, D.: Quantum/classical interface: fermion spin. (2007) arXiv:0710.3144v2
  21. 21.
    Landsman, N.P.: Between classical and quantum (2005). arXiv:quant-ph/0506082v2
  22. 22.
    Wood, C.J., Biamonte, J.D., Cory, D.G.: Tensor networks and graphical calculus for open quantum systems. Quantum Inf. Comput. 15(9–10), 0759–0811 (2015)MathSciNetGoogle Scholar
  23. 23.
    Usher, N., Browne, D.E.: Noise in one-dimensional measurement-based quantum computing. arXiv:1704.07298v1 [quant-ph] (2017)
  24. 24.
    Wei, T.-C.: Quantum spin models for measurement-based quantum computation. Adv. Phys. X 3(1), 1461026 (2018)Google Scholar
  25. 25.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems. arXiv:quant-ph/0402085 (2003)
  27. 27.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003).  https://doi.org/10.1117/12.485960 ADSCrossRefGoogle Scholar
  28. 28.
    Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031v1 (2005)
  29. 29.
    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86(4), 1203–1259 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhauser, Basel (1992)CrossRefGoogle Scholar
  31. 31.
    Berg-Sørensen, K., Flyvbjerg, H.: The colour of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation. N. J. Phys. 7, 38 (2005)CrossRefGoogle Scholar
  32. 32.
    Kunita, H.: Itô’s stochastic calculus: its surprising power for applications. Stoch. Process. Appl. 120, 622–652 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kupferman, R., Pavliotis, G.A., Stuart, A.M.: Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E 70, 036120 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rohit Singh
    • 1
  • Harish Parthasarathy
    • 1
  • Jyotsna Singh
    • 1
    Email author
  1. 1.Multimedia Research Laboratory, Room No.201, Block IV, ECE DivisionNetaji Subhas Institute of Technology, Sector-3DwarkaIndia

Personalised recommendations