Advertisement

Distribution of spin correlation strengths in multipartite systems

  • Bing Yu
  • Naihuan JingEmail author
  • Xianqing Li-Jost
Article
  • 55 Downloads

Abstract

For a two-qubit state, the isotropic strength measures the degree of isotropic spin correlation. The concept of isotropic strength is generalized to multipartite qudit systems, and the strength distributions for tripartite and quadripartite qudit systems are thoroughly investigated. We show that the sum of relative isotropic strengths of any three-qudit state over d-dimensional Hilbert space cannot exceed \(d-1\), which generalizes the case \(d=2\). The trade-off relations and monogamy-like relations of the sum of spin correlation strengths for pure three- and four-partite systems are derived. Moreover, the bounds of spin correlation strengths among different subsystems of a quadripartite state are used to analyze quantum entanglement.

Notes

Acknowledgements

We thank Jun Li for helpful discussions on entanglement detection and related problems. This work is partially supported by National Natural Science Foundation Grant No. 11531004, Simons Foundation Grant No. 523868 and a grant from China Scholarship Council.

References

  1. 1.
    Gamel, O.: Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93, 062320 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Badzikag, P., Brukner, C., Laskowski, W., Paterek, T., Zukowski, M.: Experimentally friendly geometrical criteria for entanglement. Phys. Rev. Lett. 100, 140403 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the Bloch representation of density matrices. Quantum Inf. Comput. 8, 773 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, Ch., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Li, M., Jia, L., Wang, J., Shen, S., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Li, M., Shen, S., Jing, N., Fei, S.M., Li-Jost, X.Q.: Tight upper bound for the maximal quantum value of the Svetlichny operators. Phys. Rev. A 96, 042323 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Dakić, B., Vedral, V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2001)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Milne, A., Jevtic, S., Jennings, D., Wiseman, H., Rudolph, T.: Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Jevtic, S., Hall, M.J.W., Anderson, M.R., Zwierz, M., Wiseman, H.M.: Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32(A), 40 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Cheng, S., Milne, A., Hall, M.J.W., Wiseman, H.M.: Volume monogamy of quantum steering ellipsoids for multiqubit systems. Phys. Rev. A 94, 042105 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, C., Cheng, S., Li, L., Liang, Q.Y., et al.: Experimental validation of quantum steering ellipsoids and tests of volume monogamy relations. Phys. Rev. Lett. 122, 070402 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1965)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-\(\frac{1}{2}\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, Z., Qiao, J., Wang, J., et al.: The norms of Bloch vectors and a trade-off relation of Svetlichny inequalities. Quantum Inf. Process. 17, 220 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations