Advertisement

Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel

  • Mohammad Sadegh Sadeghi-Zadeh
  • Monireh HoushmandEmail author
  • Hossein Aghababa
  • Mohammad Hossein Kochakzadeh
  • Fahimeh Zarmehi
Article
  • 121 Downloads

Abstract

This study presents a bidirectional quantum teleportation of two quantum states with an arbitrary number of qubits, n, for the first time. This protocol utilizes a particular state with 4n qubits as a quantum channel. The required operators include CNOT, Paulis and single-qubit measurements. In this paper, we also present a comprehensive noise analysis for the proposed protocol.

Keywords

Bidirectional quantum teleportation Arbitrary N-qubit state Measurement bases Unitary operations 

Notes

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Yang, C.-P., Chu, S.-I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Xin-Wei, Z., Hai-Yang, S., Gang-Long, M.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state (2010). arXiv preprint arXiv:1006.0052
  8. 8.
    Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Deng, F.-G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Deng, F.-G., Zhou, H.-Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337(4–6), 329–334 (2005)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Li, Y.-H., Li, X.-L., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14(10), 3835–3844 (2015) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an \(n\)-qubit quantum state. Quantum Inf. Process. 16(12), 292 (2017)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a \(d\)-dimensional (\(n\)+ 2)-particle nonmaximally entangled state as the quantum channel. Sci. China Phys. Mech. Astron. 54(3), 484–490 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)zbMATHCrossRefGoogle Scholar
  21. 21.
    Wang, J.-W., Shu, L.: Bidirectional quantum controlled teleportation of qudit state via partially entangled GHZ-type states. Int. J. Mod. Phys. B 29(18), 1550122 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hassanpour, S., Houshmand, M.: Bidirectional quantum controlled teleportation by using epr states and entanglement swapping (2015). arXiv preprint arXiv:1502.03551
  23. 23.
    Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)zbMATHCrossRefGoogle Scholar
  25. 25.
    Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Li, Y., Nie, L., Li, X., Sang, M.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 1–12 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary \(n\)-qubit information state. Int. J. Theor. Phys. 55(4), 2061–2070 (2016)CrossRefzbMATHGoogle Scholar
  30. 30.
    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the Danube. Nature 430(7002), 849–849 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., et al.: Quantum teleportation and entanglement distribution over 100-km free-space channels. Nature 488(7410), 185–188 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., et al.: Quantum teleportation over 143 km using active feed-forward. Nature 489(7415), 269–273 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Sun, Q.C., Mao, Y.L., Chen, S.J., Zhang, W., Jiang, Y.F., Zhang, Y.B., Zhang, W.J., Miki, S., Yamashita, T., Terai, H., et al.: Quantum teleportation with independent sources over an optical fibre network (2016). arXiv preprint arXiv:1602.07081
  35. 35.
    Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single bell state. Phys. Rev. A 93(6), 062305 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72(6), 797 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Horodecki, M., Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Sangchul, O., Lee, S., Lee, H.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Kim, H., Park, D.K., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger–Horne–Zeilinger versus \(W\) states: quantum teleportation through noisy channels. Phys. Rev. A 78(1), 012312 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Hong, W.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)zbMATHCrossRefGoogle Scholar
  41. 41.
    Sang, M.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)zbMATHCrossRefGoogle Scholar
  42. 42.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Makhlin, Y., Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001) ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Zhong-Fang, C., Jin-Ming, L., Lei, M.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23(2), 020312 (2013)Google Scholar
  46. 46.
    Li, J.-F., Liu, J.-M., Xin-Ye, X.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14(9), 3465–3481 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Li, J.-F., Liu, J.-M., Feng, X.-L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15(5), 2155–2168 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Sadegh Sadeghi-Zadeh
    • 1
  • Monireh Houshmand
    • 1
    Email author
  • Hossein Aghababa
    • 2
    • 3
  • Mohammad Hossein Kochakzadeh
    • 4
  • Fahimeh Zarmehi
    • 1
  1. 1.Electrical Engineering DepartmentImam Reza International UniversityMashhadIran
  2. 2.Faculty of Engineering, College of FarabiUniversity of TehranTehranIran
  3. 3.Sorbonne UniversityPairsFrance
  4. 4.Department of Electrical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations