Advertisement

Controllable optical response properties in a hybrid optomechanical system

  • Xue-Jian Sun
  • Hao Chen
  • Wen-Xiao Liu
  • Hong-Rong LiEmail author
Article
  • 102 Downloads

Abstract

In this paper, we study theoretically the optical response properties of the output field in a hybrid optomechanical system, in which a degenerate optical parametric amplifier (OPA) and a \(\varLambda \)-type three-level atomic ensemble are placed in a driven optical cavity with a moving end mirror. We show that due to the presence of the OPA and the atomic medium, our proposal has the ability to exhibit the optical tristability and multiple optomechanically induced transparency (OMIT)-like effects. Moreover, the combined effects of optical amplification and OMIT-like as well as the tunable switch from slow-to-fast light can be realized by tuning the gain coefficient of the OPA and the phase of the field driving the OPA. In addition, the role of the OPA on the higher-order sideband generation has also been investigated. We find that the presence of the OPA contributes to the enhancement of the second-order sideband generation. These results provide a new way to engineer the hybrid optomechanical devices for applications in optical communications and signal processing.

Keywords

Quantum optics Optomechanical system Coherent optical effects Nonlinear optics Optomechanically induced transparency Parametric process 

Notes

Funding

Funding was provided by Natural Science Foundation of China (Grant No. 11774284).

References

  1. 1.
    Aspelmeyer, M., Kipenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: quantum theory of cavity assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Huang, S., Agarwal, G.S.: Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79, 013821 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Riedinger, R., Hong, S., Norte, R.A., Slater, J.A., Shang, J., Krause, A.G., Anant, V., Aspelmeyer, M., Gröblacher, S.: Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Kyriienko, O., Liew, T.C.H., Shelykh, I.A.: Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. Phys. Rev. Lett. 112, 076402 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Milburn, G., Walls, D.: Production of squeezed states in a degenerate parametric amplifier. Opt. Commun. 39, 401 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    Agarwal, G.S., Huang, S.: Strong mechanical squeezing and its detection. Phys. Rev. A 80, 033807 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Kronwald, A., Marquardt, F., Clerk, A.A.: Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 88, 063833 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Lü, X.Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Agarwal, G.S., Huang, S.: Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys. Rev. A 83, 043826 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Lin, Q., Rosenberg, J., Chang, D., Camacho, R., Eichenfield, M., Vahala, K.J., Painter, O.: Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics 4, 236 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Safavi-Naeini, A.H., Alegre, T.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Massel, F., Cho, S.U., Pirkkalainen, J.M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Di Giuseppe, G., Vitali, D.: Electromagnetically induced transparency in a membrane-in-the-middle setup in the room temperature. Phys. Rev. A 88, 013804 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Boller, K.J., Imamoglu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Kasapi, A., Jain, M., Yin, G.Y., Harris, S.E.: Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Sun, C.P., Li, Y., Liu, X.F.: Quasi-spin-wave quantum memories with a dynamical symmetry. Phys. Rev. Lett. 91, 147903 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Li, Y., Sun, C.P.: Group velocity of a probe light in an ensemble of \(\Lambda \) atoms under two-photon resonance. Phys. Rev. A. 69, 051802 (R) (2004)CrossRefADSGoogle Scholar
  25. 25.
    Gong, Z.R., Ian, H., Zhou, L., Sun, C.P.: Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism. Phys. Rev. A 78, 053806 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Chang, Y., Shi, T., Liu, Y.X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Tarhan, D., Huang, S., Müstecaplıoğlu, Ö.E.: Superluminal and ultraslow light propagation in optomechanical systems. Phys. Rev. A 87, 013824 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Akram, M., Khan, M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    He, W., Li, J.J., Zhu, K.D.: Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems. Opt. Lett. 35, 339–341 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Stannigel, K., Rabl, P., Sorensen, A.S., Lukin, M.D., Zoller, P.: Optomechanical transducers for quantum information processing. Phys. Rev. A 84, 042341 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Mcgee, S.A., Meiser, D., Regal, C.A., Lehnert, K.W., Holland, M.J.: Mechanical resonators for storage and transfer of electrical and optical quantum states. Phys. Rev. A 87, 053818 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Børkje, K., Nunnenkamp, A., Teufel, J.D., Girvin, S.M.: Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett. 111, 053603 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Lü, H., Jiang, Y., Wang, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Photonics Res. 5(4), 367 (2017)CrossRefGoogle Scholar
  37. 37.
    Jing, H., Ozdemir, S.K., Geng, Z., Zhang, J., Lü, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)CrossRefGoogle Scholar
  38. 38.
    Jiao, Y., Lü, H., Qian, J., Li, Y., Jing, H.: Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New J. Phys. 18, 083034 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Liu, Y.L., Wu, R., Zhang, J., Özdemir, S.K., Yang, L., Nori, F., Liu, Y.X.: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. Rev. A 95, 013843 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Xiao, Y., Yu, Y.F., Zhang, Z.M.: Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble. Opt. Exp. 22, 017979 (2014)CrossRefGoogle Scholar
  44. 44.
    Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Ullah, K., Jing, H., Saif, F.: Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics. Phys. Rev. A 97, 033812 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    Wang, T., Zheng, M.H., Bai, C.H., Wang, D.Y., Zhu, A.D., Wang, H.F., Zhang, S.: Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system. Ann. Phys. 530, 1800228 (2018)CrossRefGoogle Scholar
  47. 47.
    Huang, S., Agarwal, G.S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A 80, 033807 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Kumar, T., Bhattacherjee, A.B.: Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81, 013835 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Shahidani, S., Naderi, M.H., Soltanolkotabi, M.: Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys. Rev. A 88, 053813 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Jiao, Y.F., Lu, T.X., Jing, H.: Optomechanical second-order sidebands and group delays in a Kerr resonator. Phys. Rev. A 97, 013843 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K.J., Kippenberg, T.J.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Nation, P.D., Suh, J., Blencowe, M.P.: Ultrastrong optomechanics incorporating the dynamical Casimir effect. Phys. Rev. A 93, 022510 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., Maleki, L.: Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B 20, 333 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., Maleki, L.: Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    Savchenkov, A.A., Matsko, A.B., Mohageg, M., Strekalov, D.V., Maleki, L.: Parametric oscillations in a whispering gallery resonator. Opt. Lett. 32, 157 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Fürst, J.U., Strekalov, D.V., Elser, D., Lassen, M., Andersen, U.L., Marquardt, C., Leuchs, G.: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Fürst, J.U., Strekalov, D.V., Elser, D., Aiello, A., Andersen, U.L., Marquardt, C., Leuchs, G.: Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett. 106, 113901 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Förtsch, M., Fürst, J.U., Wittmann, C., Strekalov, D., Aiello, A., Chekhova, M.V., Silberhorn, C., Leuchs, G., Marquardt, C.: A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    Förtsch, M., Schunk, G., Fürst, J.U., Strekalov, D., Gerrits, T., Stevens, M.J., Sedlmeir, F., Schwefel, H.G., Nam, S.W., Leuchs, G., Marquardt, C.: Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source. Phys. Rev. A 91, 023812 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Leghtas, Z., Touzard, S., Pop, I.M., Kou, A., Vlastakis, B., Petrenko, A., Sliwa, K.M., Narla, A., Shankar, S., Hatridge, M.J., Reagor, M.: Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1–102 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Aoki, T., Dayan, B., Wilcut, E., Bowen, W.P., Parkins, A.S., Kippenberg, T.J., Vahala, K.J., Kimble, H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 7112 (2006)Google Scholar
  67. 67.
    Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)zbMATHCrossRefGoogle Scholar
  69. 69.
    Macrì, V., Ridolfo, A., Di Stefano, O., Kockum, A.F., Nori, F., Savasta, S.: Nonperturbative dynamical Casimir effect in optomechanical systems: vacuum Casimir-Rabi splittings. Phys. Rev. X 8, 011031 (2018)Google Scholar
  70. 70.
    Wang, X., Qin, W., Miranowicz, A., Savasta, S., Nori, F.: Unconventional cavity optomechanics: nonlinear control of phonons in the acoustic quantum vacuum. arXiv:1902.09910 (2019)
  71. 71.
    Xiong, H., Si, L.G., Zheng, A.S., Yang, X.X., Wu, Y.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955)ADSCrossRefGoogle Scholar
  73. 73.
    Anisimov, P.M., Dowling, J.P., Sanders, B.C.: Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    Peng, B., Özdemir, S.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 55082 (2014)ADSGoogle Scholar
  75. 75.
    Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    Liu, S., Yang, W.X., Zhu, Z., Shui, T., Li, L.: Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Opt. Lett. 43, 9 (2018)ADSCrossRefGoogle Scholar
  77. 77.
    Li, Y., Zhu, K.: High-order sideband optical properties of a DNA quantum dot hybrid system. Photonics Res. 1, 16 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xue-Jian Sun
    • 1
  • Hao Chen
    • 1
  • Wen-Xiao Liu
    • 1
  • Hong-Rong Li
    • 1
    Email author
  1. 1.Institute of Quantum Optics and Quantum Information, School of ScienceXi’an Jiaotong UniversityXi’anChina

Personalised recommendations