Greenberger–Horne–Zeilinger state generation with linear optical elements

  • Bertúlio de Lima Bernardo
  • Mate Lencses
  • Samuraí Brito
  • Askery CanabarroEmail author


We propose a scheme to probabilistically generate Greenberger–Horne–Zeilinger states encoded on the path degree of freedom of three photons. These photons are totally independent from each other, having no direct interaction during the whole evolution of the protocol, which remarkably requires only linear optical devices to work and two extra ancillary photons to mediate the correlation. The efficacy of the method, which has potential application in distributed quantum computation and multiparty quantum communication, is analyzed in comparison with similar proposals reported in the recent literature. We also discuss the main error sources that limit the efficiency of the protocol in a real experiment and some interesting aspects about the mediator photons in connection with the concept of spatial nonlocality.


Quantum entanglement Greenberger-Horne-Zeilinger (GHZ) states Nonlocality 



The authors acknowledge the Brazilian funding agency CNPq (AC’s Universal Grant No. 423713/2016-7, BLB’s PQ Grant No. 309292/2016-6), UFAL (AC’s paid license for scientific cooperation at UFRN), MEC/UFRN (postdoctoral fellowships at IIP). We also thank Rafael Chaves for fruitful discussions.


  1. 1.
    Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. (1935). CrossRefzbMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (1996). Google Scholar
  3. 3.
    Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech: Theory Exp. (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. (2010). CrossRefGoogle Scholar
  5. 5.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Laflorencie, N.: Quantum entanglement in condensed matter systems. Quant. Entanglement Condens. Matter Syst. (2016). MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rangarajan, R., Goggin, M., Kwiat, P., Lee, K.F., Chen, J., Liang, C., Li, X., Voss, P.L., Kumar, P., Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K., Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Optimizing type-I polarization-entangled photons “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”. Phys. Rev. Lett. Nat. (1993). CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ekert, A.K.: Quantum cryptography based on Bellâs theorem. Phys. Rev. Lett. (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)zbMATHGoogle Scholar
  11. 11.
    Dicarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature (2009). CrossRefGoogle Scholar
  12. 12.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature (2008). CrossRefGoogle Scholar
  13. 13.
    Nelson, R.J., Cory, D.G., Lloyd, S.: Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance. Phys. Rev. A (2000). CrossRefGoogle Scholar
  14. 14.
    Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. (2007). CrossRefGoogle Scholar
  15. 15.
    Gómez, S., Mattar, A., Gómez, E.S., Cavalcanti, D., Farías, O.J., Acín, A., Lima, G.: Experimental nonlocality-based randomness generation with nonprojective measurements. Phys. Rev. A (2018). CrossRefGoogle Scholar
  16. 16.
    Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A—Atomic Mol. Opt. Phys. (2000). CrossRefGoogle Scholar
  17. 17.
    Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A—Atomic Mol. Opt. Phys (2002). CrossRefGoogle Scholar
  18. 18.
    Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. (2008). CrossRefGoogle Scholar
  19. 19.
    Chaves, R., Aolita, L., Acín, A.: Robust multipartite quantum correlations without complex encodings. Phys. Rev. A—Atomic Mol. Opt. Phys. (2012). CrossRefGoogle Scholar
  20. 20.
    Vivoli, V.C., Ribeiro, J., Wehner, S.: High fidelity GHZ generation within nearby nodes. (2018).
  21. 21.
    Friis, N., Marty, O., Maier, C., Hempel, C., Holzäpfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X (2018). CrossRefGoogle Scholar
  22. 22.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. (1990). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A—Atomic Mol. Opt. Phys. (2001). CrossRefGoogle Scholar
  24. 24.
    Giovannetti, V., Lloyd, S., MacCone, L.: Advances in quantum metrology. Nat. Photonics (2011). CrossRefGoogle Scholar
  25. 25.
    Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. (2013). CrossRefGoogle Scholar
  26. 26.
    Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. (2014). CrossRefGoogle Scholar
  27. 27.
    Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. (2009). MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A—Atomic Mol. Opt. Phys. (1999). CrossRefzbMATHGoogle Scholar
  29. 29.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. (2014). CrossRefGoogle Scholar
  30. 30.
    Bouwmeester, D., Pan, J.W., Bongaerts, M., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2017). CrossRefzbMATHGoogle Scholar
  32. 32.
    Preskill, J.: Quantum Computation lecture notes for physics 219/computer science 219.
  33. 33.
    Bergamasco, N., Menotti, M., Sipe, J.E., Liscidini, M.: Generation of path-encoded Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 8(5), 54014 (2017). ADSCrossRefGoogle Scholar
  34. 34.
    Su, X., Tian, C., Deng, X., Li, Q., Xie, C., Peng, K.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. (2016). CrossRefGoogle Scholar
  35. 35.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2006). CrossRefGoogle Scholar
  36. 36.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. (1993). CrossRefGoogle Scholar
  37. 37.
    de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    De Lima Bernardo, B., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. (2017). CrossRefGoogle Scholar
  39. 39.
    Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. (1987). CrossRefGoogle Scholar
  40. 40.
    Eltschka, C., Osterlohe, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. (2008). CrossRefGoogle Scholar
  41. 41.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A—Atomic Mol. Opt. Phys. (1998). CrossRefGoogle Scholar
  42. 42.
    Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. (2009). CrossRefGoogle Scholar
  43. 43.
    Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 EP (2015). ADSCrossRefGoogle Scholar
  44. 44.
    Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 EP (2015). ADSCrossRefGoogle Scholar
  45. 45.
    He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 EP (2015). ADSCrossRefGoogle Scholar
  46. 46.
    Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 EP (2015). ADSCrossRefGoogle Scholar
  47. 47.
    Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016). ADSCrossRefGoogle Scholar
  48. 48.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. (2012). CrossRefGoogle Scholar
  49. 49.
    Lopes, R., Imanaliev, A., Aspect, A., Cheneau, M., Boiron, D., Westbrook, C.I.: Atomic Hong–Ou–Mandel experiment. Nature (2015). CrossRefGoogle Scholar
  50. 50.
    Kaufman, A.M., Tichy, M.C., Mintert, F., Rey, A.M., Regal, C.A.: The Hong–Ou–Mandel effect with atoms. Nature (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrazil
  2. 2.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  4. 4.Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEx, Campus ArapiracaUniversidade Federal de AlagoasArapiracaBrazil
  5. 5.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations