Advertisement

Greenberger–Horne–Zeilinger state generation with linear optical elements

  • Bertúlio de Lima Bernardo
  • Mate Lencses
  • Samuraí Brito
  • Askery CanabarroEmail author
Article

Abstract

We propose a scheme to probabilistically generate Greenberger–Horne–Zeilinger states encoded on the path degree of freedom of three photons. These photons are totally independent from each other, having no direct interaction during the whole evolution of the protocol, which remarkably requires only linear optical devices to work and two extra ancillary photons to mediate the correlation. The efficacy of the method, which has potential application in distributed quantum computation and multiparty quantum communication, is analyzed in comparison with similar proposals reported in the recent literature. We also discuss the main error sources that limit the efficiency of the protocol in a real experiment and some interesting aspects about the mediator photons in connection with the concept of spatial nonlocality.

Keywords

Quantum entanglement Greenberger-Horne-Zeilinger (GHZ) states Nonlocality 

Notes

Acknowledgements

The authors acknowledge the Brazilian funding agency CNPq (AC’s Universal Grant No. 423713/2016-7, BLB’s PQ Grant No. 309292/2016-6), UFAL (AC’s paid license for scientific cooperation at UFRN), MEC/UFRN (postdoctoral fellowships at IIP). We also thank Rafael Chaves for fruitful discussions.

References

  1. 1.
    Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. (1935).  https://doi.org/10.1017/S0305004100013554 CrossRefzbMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (1996).  https://doi.org/10.1016/0375-9601(95)00930-2 Google Scholar
  3. 3.
    Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech: Theory Exp. (2004).  https://doi.org/10.1088/1742-5468/2004/06/P06002 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. (2010).  https://doi.org/10.1038/nphys1652 CrossRefGoogle Scholar
  5. 5.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. (2013).  https://doi.org/10.1002/prop.201300020 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Laflorencie, N.: Quantum entanglement in condensed matter systems. Quant. Entanglement Condens. Matter Syst. (2016).  https://doi.org/10.1016/j.physrep.2016.06.008 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rangarajan, R., Goggin, M., Kwiat, P., Lee, K.F., Chen, J., Liang, C., Li, X., Voss, P.L., Kumar, P., Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K., Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Optimizing type-I polarization-entangled photons “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”. Phys. Rev. Lett. Nat. (1993).  https://doi.org/10.1364/OE.17.018920 CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. (1992).  https://doi.org/10.1103/PhysRevLett.69.2881 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ekert, A.K.: Quantum cryptography based on Bellâs theorem. Phys. Rev. Lett. (1991).  https://doi.org/10.1103/PhysRevLett.67.661 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)zbMATHGoogle Scholar
  11. 11.
    Dicarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature (2009).  https://doi.org/10.1038/nature08121 CrossRefGoogle Scholar
  12. 12.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature (2008).  https://doi.org/10.1038/nature07125 CrossRefGoogle Scholar
  13. 13.
    Nelson, R.J., Cory, D.G., Lloyd, S.: Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance. Phys. Rev. A (2000).  https://doi.org/10.1103/PhysRevA.61.022106 CrossRefGoogle Scholar
  14. 14.
    Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. (2007).  https://doi.org/10.1038/nphys507 CrossRefGoogle Scholar
  15. 15.
    Gómez, S., Mattar, A., Gómez, E.S., Cavalcanti, D., Farías, O.J., Acín, A., Lima, G.: Experimental nonlocality-based randomness generation with nonprojective measurements. Phys. Rev. A (2018).  https://doi.org/10.1103/PhysRevA.97.040102 CrossRefGoogle Scholar
  16. 16.
    Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A—Atomic Mol. Opt. Phys. (2000).  https://doi.org/10.1103/PhysRevA.62.062314 CrossRefGoogle Scholar
  17. 17.
    Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A—Atomic Mol. Opt. Phys (2002).  https://doi.org/10.1103/PhysRevA.65.052112 CrossRefGoogle Scholar
  18. 18.
    Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. (2008).  https://doi.org/10.1103/PhysRevLett.100.080501 CrossRefGoogle Scholar
  19. 19.
    Chaves, R., Aolita, L., Acín, A.: Robust multipartite quantum correlations without complex encodings. Phys. Rev. A—Atomic Mol. Opt. Phys. (2012).  https://doi.org/10.1103/PhysRevA.86.020301 CrossRefGoogle Scholar
  20. 20.
    Vivoli, V.C., Ribeiro, J., Wehner, S.: High fidelity GHZ generation within nearby nodes. (2018). http://arxiv.org/abs/1805.10663
  21. 21.
    Friis, N., Marty, O., Maier, C., Hempel, C., Holzäpfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X (2018).  https://doi.org/10.1103/PhysRevX.8.021012 CrossRefGoogle Scholar
  22. 22.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. (1990).  https://doi.org/10.1119/1.16243 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A—Atomic Mol. Opt. Phys. (2001).  https://doi.org/10.1103/PhysRevA.63.054301 CrossRefGoogle Scholar
  24. 24.
    Giovannetti, V., Lloyd, S., MacCone, L.: Advances in quantum metrology. Nat. Photonics (2011).  https://doi.org/10.1038/nphoton.2011.35 CrossRefGoogle Scholar
  25. 25.
    Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. (2013).  https://doi.org/10.1103/PhysRevLett.111.120401 CrossRefGoogle Scholar
  26. 26.
    Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. (2014).  https://doi.org/10.1038/nphys3000 CrossRefGoogle Scholar
  27. 27.
    Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. (2009).  https://doi.org/10.1103/PhysRevLett.102.050502 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A—Atomic Mol. Opt. Phys. (1999).  https://doi.org/10.1103/PhysRevA.59.1829 CrossRefzbMATHGoogle Scholar
  29. 29.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. (2014).  https://doi.org/10.1103/RevModPhys.86.419 CrossRefGoogle Scholar
  30. 30.
    Bouwmeester, D., Pan, J.W., Bongaerts, M., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. (1999).  https://doi.org/10.1103/PhysRevLett.82.1345 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2017).  https://doi.org/10.1016/j.physleta.2017.05.018 CrossRefzbMATHGoogle Scholar
  32. 32.
    Preskill, J.: Quantum Computation lecture notes for physics 219/computer science 219. http://www.theory.caltech.edu/people/preskill/ph229/
  33. 33.
    Bergamasco, N., Menotti, M., Sipe, J.E., Liscidini, M.: Generation of path-encoded Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 8(5), 54014 (2017).  https://doi.org/10.1103/PhysRevApplied.8.054014 ADSCrossRefGoogle Scholar
  34. 34.
    Su, X., Tian, C., Deng, X., Li, Q., Xie, C., Peng, K.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. (2016).  https://doi.org/10.1103/PhysRevLett.117.240503 CrossRefGoogle Scholar
  35. 35.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2006).  https://doi.org/10.1016/j.physleta.2006.01.035 CrossRefGoogle Scholar
  36. 36.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. (1993).  https://doi.org/10.1103/PhysRevLett.71.4287 CrossRefGoogle Scholar
  37. 37.
    de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. (2016).  https://doi.org/10.1016/j.aop.2016.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    De Lima Bernardo, B., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. (2017).  https://doi.org/10.1038/srep39767 CrossRefGoogle Scholar
  39. 39.
    Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. (1987).  https://doi.org/10.1103/PhysRevLett.59.2044 CrossRefGoogle Scholar
  40. 40.
    Eltschka, C., Osterlohe, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. (2008).  https://doi.org/10.1088/1367-2630/10/4/043014 CrossRefGoogle Scholar
  41. 41.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A—Atomic Mol. Opt. Phys. (1998).  https://doi.org/10.1103/PhysRevA.57.822 CrossRefGoogle Scholar
  42. 42.
    Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. (2009).  https://doi.org/10.1103/PhysRevLett.103.020501 CrossRefGoogle Scholar
  43. 43.
    Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 EP (2015).  https://doi.org/10.1038/nnano.2015.60 ADSCrossRefGoogle Scholar
  44. 44.
    Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 EP (2015).  https://doi.org/10.1038/nnano.2015.79 ADSCrossRefGoogle Scholar
  45. 45.
    He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 EP (2015).  https://doi.org/10.1038/nnano.2015.75 ADSCrossRefGoogle Scholar
  46. 46.
    Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 EP (2015).  https://doi.org/10.1038/nnano.2015.242 ADSCrossRefGoogle Scholar
  47. 47.
    Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016).  https://doi.org/10.1038/nphoton.2016.186 ADSCrossRefGoogle Scholar
  48. 48.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. (2012).  https://doi.org/10.1103/RevModPhys.84.777 CrossRefGoogle Scholar
  49. 49.
    Lopes, R., Imanaliev, A., Aspect, A., Cheneau, M., Boiron, D., Westbrook, C.I.: Atomic Hong–Ou–Mandel experiment. Nature (2015).  https://doi.org/10.1038/nature14331 CrossRefGoogle Scholar
  50. 50.
    Kaufman, A.M., Tichy, M.C., Mintert, F., Rey, A.M., Regal, C.A.: The Hong–Ou–Mandel effect with atoms. Nature (2018).  https://doi.org/10.1016/bs.aamop.2018.03.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrazil
  2. 2.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  4. 4.Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEx, Campus ArapiracaUniversidade Federal de AlagoasArapiracaBrazil
  5. 5.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations