Greenberger–Horne–Zeilinger state generation with linear optical elements
- 85 Downloads
- 1 Citations
Abstract
We propose a scheme to probabilistically generate Greenberger–Horne–Zeilinger states encoded on the path degree of freedom of three photons. These photons are totally independent from each other, having no direct interaction during the whole evolution of the protocol, which remarkably requires only linear optical devices to work and two extra ancillary photons to mediate the correlation. The efficacy of the method, which has potential application in distributed quantum computation and multiparty quantum communication, is analyzed in comparison with similar proposals reported in the recent literature. We also discuss the main error sources that limit the efficiency of the protocol in a real experiment and some interesting aspects about the mediator photons in connection with the concept of spatial nonlocality.
Keywords
Quantum entanglement Greenberger-Horne-Zeilinger (GHZ) states NonlocalityNotes
Acknowledgements
The authors acknowledge the Brazilian funding agency CNPq (AC’s Universal Grant No. 423713/2016-7, BLB’s PQ Grant No. 309292/2016-6), UFAL (AC’s paid license for scientific cooperation at UFRN), MEC/UFRN (postdoctoral fellowships at IIP). We also thank Rafael Chaves for fruitful discussions.
References
- 1.Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. (1935). https://doi.org/10.1017/S0305004100013554 CrossRefzbMATHGoogle Scholar
- 2.Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (1996). https://doi.org/10.1016/0375-9601(95)00930-2 Google Scholar
- 3.Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech: Theory Exp. (2004). https://doi.org/10.1088/1742-5468/2004/06/P06002 MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. (2010). https://doi.org/10.1038/nphys1652 CrossRefGoogle Scholar
- 5.Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. (2013). https://doi.org/10.1002/prop.201300020 MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Laflorencie, N.: Quantum entanglement in condensed matter systems. Quant. Entanglement Condens. Matter Syst. (2016). https://doi.org/10.1016/j.physrep.2016.06.008 MathSciNetCrossRefGoogle Scholar
- 7.Rangarajan, R., Goggin, M., Kwiat, P., Lee, K.F., Chen, J., Liang, C., Li, X., Voss, P.L., Kumar, P., Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K., Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Optimizing type-I polarization-entangled photons “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”. Phys. Rev. Lett. Nat. (1993). https://doi.org/10.1364/OE.17.018920 CrossRefGoogle Scholar
- 8.Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. (1992). https://doi.org/10.1103/PhysRevLett.69.2881 MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Ekert, A.K.: Quantum cryptography based on Bellâs theorem. Phys. Rev. Lett. (1991). https://doi.org/10.1103/PhysRevLett.67.661 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)zbMATHGoogle Scholar
- 11.Dicarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature (2009). https://doi.org/10.1038/nature08121 CrossRefGoogle Scholar
- 12.Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature (2008). https://doi.org/10.1038/nature07125 CrossRefGoogle Scholar
- 13.Nelson, R.J., Cory, D.G., Lloyd, S.: Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance. Phys. Rev. A (2000). https://doi.org/10.1103/PhysRevA.61.022106 CrossRefGoogle Scholar
- 14.Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. (2007). https://doi.org/10.1038/nphys507 CrossRefGoogle Scholar
- 15.Gómez, S., Mattar, A., Gómez, E.S., Cavalcanti, D., Farías, O.J., Acín, A., Lima, G.: Experimental nonlocality-based randomness generation with nonprojective measurements. Phys. Rev. A (2018). https://doi.org/10.1103/PhysRevA.97.040102 CrossRefGoogle Scholar
- 16.Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A—Atomic Mol. Opt. Phys. (2000). https://doi.org/10.1103/PhysRevA.62.062314 CrossRefGoogle Scholar
- 17.Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A—Atomic Mol. Opt. Phys (2002). https://doi.org/10.1103/PhysRevA.65.052112 CrossRefGoogle Scholar
- 18.Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.080501 CrossRefGoogle Scholar
- 19.Chaves, R., Aolita, L., Acín, A.: Robust multipartite quantum correlations without complex encodings. Phys. Rev. A—Atomic Mol. Opt. Phys. (2012). https://doi.org/10.1103/PhysRevA.86.020301 CrossRefGoogle Scholar
- 20.Vivoli, V.C., Ribeiro, J., Wehner, S.: High fidelity GHZ generation within nearby nodes. (2018). http://arxiv.org/abs/1805.10663
- 21.Friis, N., Marty, O., Maier, C., Hempel, C., Holzäpfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X (2018). https://doi.org/10.1103/PhysRevX.8.021012 CrossRefGoogle Scholar
- 22.Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. (1990). https://doi.org/10.1119/1.16243 MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A—Atomic Mol. Opt. Phys. (2001). https://doi.org/10.1103/PhysRevA.63.054301 CrossRefGoogle Scholar
- 24.Giovannetti, V., Lloyd, S., MacCone, L.: Advances in quantum metrology. Nat. Photonics (2011). https://doi.org/10.1038/nphoton.2011.35 CrossRefGoogle Scholar
- 25.Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. (2013). https://doi.org/10.1103/PhysRevLett.111.120401 CrossRefGoogle Scholar
- 26.Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. (2014). https://doi.org/10.1038/nphys3000 CrossRefGoogle Scholar
- 27.Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.050502 MathSciNetCrossRefGoogle Scholar
- 28.Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A—Atomic Mol. Opt. Phys. (1999). https://doi.org/10.1103/PhysRevA.59.1829 CrossRefzbMATHGoogle Scholar
- 29.Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. (2014). https://doi.org/10.1103/RevModPhys.86.419 CrossRefGoogle Scholar
- 30.Bouwmeester, D., Pan, J.W., Bongaerts, M., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. (1999). https://doi.org/10.1103/PhysRevLett.82.1345 MathSciNetCrossRefzbMATHGoogle Scholar
- 31.de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2017). https://doi.org/10.1016/j.physleta.2017.05.018 CrossRefzbMATHGoogle Scholar
- 32.Preskill, J.: Quantum Computation lecture notes for physics 219/computer science 219. http://www.theory.caltech.edu/people/preskill/ph229/
- 33.Bergamasco, N., Menotti, M., Sipe, J.E., Liscidini, M.: Generation of path-encoded Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 8(5), 54014 (2017). https://doi.org/10.1103/PhysRevApplied.8.054014 ADSCrossRefGoogle Scholar
- 34.Su, X., Tian, C., Deng, X., Li, Q., Xie, C., Peng, K.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. (2016). https://doi.org/10.1103/PhysRevLett.117.240503 CrossRefGoogle Scholar
- 35.Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2006). https://doi.org/10.1016/j.physleta.2006.01.035 CrossRefGoogle Scholar
- 36.Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. (1993). https://doi.org/10.1103/PhysRevLett.71.4287 CrossRefGoogle Scholar
- 37.de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. (2016). https://doi.org/10.1016/j.aop.2016.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
- 38.De Lima Bernardo, B., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. (2017). https://doi.org/10.1038/srep39767 CrossRefGoogle Scholar
- 39.Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. (1987). https://doi.org/10.1103/PhysRevLett.59.2044 CrossRefGoogle Scholar
- 40.Eltschka, C., Osterlohe, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. (2008). https://doi.org/10.1088/1367-2630/10/4/043014 CrossRefGoogle Scholar
- 41.Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A—Atomic Mol. Opt. Phys. (1998). https://doi.org/10.1103/PhysRevA.57.822 CrossRefGoogle Scholar
- 42.Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.020501 CrossRefGoogle Scholar
- 43.Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 EP (2015). https://doi.org/10.1038/nnano.2015.60 ADSCrossRefGoogle Scholar
- 44.Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 EP (2015). https://doi.org/10.1038/nnano.2015.79 ADSCrossRefGoogle Scholar
- 45.He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 EP (2015). https://doi.org/10.1038/nnano.2015.75 ADSCrossRefGoogle Scholar
- 46.Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 EP (2015). https://doi.org/10.1038/nnano.2015.242 ADSCrossRefGoogle Scholar
- 47.Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016). https://doi.org/10.1038/nphoton.2016.186 ADSCrossRefGoogle Scholar
- 48.Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. (2012). https://doi.org/10.1103/RevModPhys.84.777 CrossRefGoogle Scholar
- 49.Lopes, R., Imanaliev, A., Aspect, A., Cheneau, M., Boiron, D., Westbrook, C.I.: Atomic Hong–Ou–Mandel experiment. Nature (2015). https://doi.org/10.1038/nature14331 CrossRefGoogle Scholar
- 50.Kaufman, A.M., Tichy, M.C., Mintert, F., Rey, A.M., Regal, C.A.: The Hong–Ou–Mandel effect with atoms. Nature (2018). https://doi.org/10.1016/bs.aamop.2018.03.003 CrossRefGoogle Scholar