Advertisement

Designing quantum router in IBM quantum computer

  • Bikash K. Behera
  • Tasnum Reza
  • Angad Gupta
  • Prasanta K. PanigrahiEmail author
Article

Abstract

Quantum router is an essential ingredient in a quantum network. Here, we propose a new quantum circuit for designing quantum router by using IBM’s five-qubit quantum computer. We design an equivalent quantum circuit, by means of single-qubit and two-qubit quantum gates, which can perform the operation of a quantum router. Here, we show the routing of signal information in two different paths (two signal qubits), which is directed by a control qubit. According to the process of routing, the signal information is found to be in a coherent superposition of two paths. We demonstrate the quantum nature of the router by illustrating the entanglement between the control qubit and the two signal qubits (two paths) and confirm the well preservation of the signal information in either of the two paths after the routing process. We perform quantum state tomography to verify the generation of entanglement and preservation of information. It is found that the experimental results are obtained with good fidelity.

Keywords

Quantum router Quantum communication IBM quantum experience 

Notes

Acknowledgements

B.K.B. acknowledges financial support of IISER Kolkata. T.R. and A.G. acknowledge financial support of Inspire fellowship provided by Department of Science and Technology (DST), Govt. of India. We acknowledge the support of IBM Quantum Experience for providing access to the IBM quantum processors. The views expressed are those of the authors and do not reflect the official position of IBM or the IBM Quantum Experience team.

Author Contributions

Theoretical analysis, design of quantum circuit and simulation were performed by B.K.B, T.R and A.G. Collection and analysis of data were performed by B.K.B. and T.R. The project was supervised by B.K.B. A thorough checking of the manuscript was done by P.K.P. B.K.B., T.R. and A.G. have completed the project under the guidance of P.K.P.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial as well as non-financial interests.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)CrossRefADSGoogle Scholar
  3. 3.
    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Brassard, G.: Is information the key? Nat. Phys. 1, 2 (2005)CrossRefGoogle Scholar
  5. 5.
    Medhi, D., Ramasamy, K.: Network Routing: Algorithms, Protocols, and Architectures. Morgan Kaufmann, Burlington (2017)Google Scholar
  6. 6.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (1991)CrossRefGoogle Scholar
  7. 7.
    Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Janet, L.J., Vogel, E.M., Aitchison, J.S.: Ion-exchanged optical waveguides for all-optical switching. Appl. Opt. 29, 3126 (1990)CrossRefADSGoogle Scholar
  12. 12.
    Ji, R., Yang, L., Zhang, L., Tian, Y., Ding, J., Chen, H., Lu, Y., Zhou, P., Zhu, W.: Five-port optical router for photonic networks-on-chip. Opt. Exp. 19, 20258 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Doyle, J., Carroll, J.D.: Routing TCP/IP. Cisco Press, Indianapolis (2005)Google Scholar
  14. 14.
    Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Heng, F., et al.: Quantum cloning machines and the applications. Phys. Rep. 544, 241 (2014)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Bartkiewicz, K., Miranowicz, A.: Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere. Phys. Rev. A 82, 042330 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Lemr, K., Bartkiewicz, K., Cernoch, A., Soubusta, J., Miranowicz, A.: Experimental linear-optical implementation of a multifunctional optimal qubit cloner. Phys. Rev. A 85, 050307 (2012) CrossRefADSGoogle Scholar
  19. 19.
    Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)CrossRefADSGoogle Scholar
  23. 23.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)CrossRefGoogle Scholar
  24. 24.
    Yuan, X.X., Ma, J.-J., Hou, P.-Y., Chang, X.-Y., Zu, C., Duan, L.-M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)CrossRefADSGoogle Scholar
  25. 25.
    Knoernschild, C., Kim, C., Lu, F.P., Kim, J.: Multiplexed broadband beam steering system utilizing high speed MEMS mirrors. Opt. Exp. 17, 7233 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Hall, M.A., Altepeter, J.B., Kumar, P.: Ultrafast switching of photonic entanglement. Phys. Rev. Lett. 106, 053901 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Zueco, D., Galve, F., Kohler, S., Hanggi, P.: Quantum router based on ac control of qubit chains. Phys. Rev. A 80, 042303 (2009)CrossRefADSGoogle Scholar
  28. 28.
    Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Hoi, I.-C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)CrossRefADSGoogle Scholar
  30. 30.
    Chang, X.-Y., Wang, Y.-X., Zu, C., Liu, K., Duan, L.-M.: Experimental demonstration of an entanglement-based quantum router. arXiv preprint arXiv:1207.7265v1 (2012)
  31. 31.
    Lemr, K., Cernoch, A.: Linear-optical programmable quantum router. Opt. Commun. 300, 282 (2013)CrossRefADSGoogle Scholar
  32. 32.
    Yan, G.-A., Cai, Q.-Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)CrossRefADSGoogle Scholar
  33. 33.
    Chen, Y., Jiang, D., Xie, L., Chen, L.: Quantum router for single photons carrying spin and orbital angular momentum. Sci. Rep. 6, 27033 (2016)CrossRefADSGoogle Scholar
  34. 34.
    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23, 22955 (2015)CrossRefADSGoogle Scholar
  35. 35.
    Qu, C.-C., Zhou, L., Sheng, Y.-B.: Cascaded multi-level linear-optical quantum router. Int. J. Theor. Phys. 54, 3004 (2015)CrossRefzbMATHGoogle Scholar
  36. 36.
    Chen, X.-Y., Zhang, F.-Y., Li, C.: Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016)CrossRefADSGoogle Scholar
  37. 37.
    Epping, M., Kampermann, H., BruB, D.: Robust entanglement distribution via quantum network coding. New J. Phys. 18, 103052 (2016)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Sazim, S., Chiranjeevi, V., Chakrabarty, I., Srinathan, K.: Retrieving and routing quantum information in a quantum network. Quantum Inf. Process. 14, 4651 (2015)CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Sala, A., Blaauboer, M.: Proposal for a transmon-based quantum router. J. Phys. Condens. Matter 28, 275701 (2016)CrossRefGoogle Scholar
  40. 40.
    Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1 (2017)CrossRefADSGoogle Scholar
  41. 41.
    Maji, R., Behera, B.K., Panigrahi, P.K.: Solving Linear Systems of Equations by Using the Concept of Grover’s Search Algorithm: An IBM Quantum Experience. arXiv preprint arXiv:1801.00778 (2017)
  42. 42.
    Gurnani, K., Behera, B.K., Panigrahi, P.K.: Demonstration of Optimal Fixed-Point Quantum Search Algorithm in IBM Quantum Computer. arXiv preprint arXiv:1712.10231 (2017)
  43. 43.
    Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)Google Scholar
  44. 44.
    Yalcınkaya, I., Gedik, Z.: Optimization and experimental realization of the quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)CrossRefADSGoogle Scholar
  45. 45.
    Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Wootton, J.R., Loss, D.: A repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)CrossRefADSGoogle Scholar
  47. 47.
    Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)CrossRefADSGoogle Scholar
  49. 49.
    Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Kalra, A.R., Gupta, N., Behera, B.K., Prakash, S., Panigrahi, P.K.: Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework. Quantum Inf. Process. 18, 170 (2019)CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv preprint arXiv:1712.04925 (2017)
  52. 52.
    Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)CrossRefADSGoogle Scholar
  53. 53.
    Garcia-Martin, D., Sierra, G.: Five experimental tests on the 5-Qubit IBM quantum computer. J. Appl. Math. Phys. 6, 1460 (2018)CrossRefGoogle Scholar
  54. 54.
    Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)CrossRefADSGoogle Scholar
  55. 55.
    Roy, S., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum violation of entropic noncontextual inequality in four dimension using IBM quantum computer. arXiv preprint arXiv:1710.10717 (2017)
  56. 56.
    Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)CrossRefADSGoogle Scholar
  57. 57.
    Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)CrossRefADSGoogle Scholar
  58. 58.
    Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of quantum tunneling in IBM quantum computer. arXiv preprint arXiv:1712.07326 (2017)
  59. 59.
    Riste, D., Silva, M.P.d., Ryan, C.A., Cross, A.W., Corcoles, A.D., Smolin, J.A., Gambetta, J.M., Chow, J.M., Johnson, B.R.: Demonstration of quantum advantage in machine learning. npj Quantum Inf. 3, 16 (2017)Google Scholar
  60. 60.
    Hu, W.: Empirical analysis of decision making of an AI agent on IBM’s 5Q quantum computer. Nat. Sci. 10, 45 (2018)Google Scholar
  61. 61.
    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)CrossRefADSzbMATHGoogle Scholar
  62. 62.
    Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: Quantum locker using a novel verification algorithm and its experimental realization in IBM quantum computer. arXiv preprint arXiv:1710.05196 (2017)
  63. 63.
    Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bikash K. Behera
    • 1
  • Tasnum Reza
    • 1
  • Angad Gupta
    • 1
  • Prasanta K. Panigrahi
    • 1
    Email author
  1. 1.Department of Physical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations