Advertisement

Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence?

  • Sandeep Mishra
  • Kishore Thapliyal
  • Anirban PathakEmail author
  • Anu Venugopalan
Article
  • 31 Downloads

Abstract

Quantum coherence is an essential resource for quantum information processing and various quantitative measures of it have been introduced. However, the interconnections between these measures are not yet understood properly. Here, using a large set of randomly prepared two-qubit X states (as well as general two-qubit states) and analytically obtained expressions of various measures of coherence (e.g., relative entropy of coherence, l1 norm of coherence, coherence via skew information, and first-order coherence), it is established that these measures of quantum coherence cannot be used to perform ordering of a set of quantum states based on the amount of coherence present in a state. Further, it is shown that for a given value of quantum coherence measured by the relative entropy of coherence, maximally nonlocal mixed states of X type [which are characterized by the maximal violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality] have maximum quantum coherence as measured by l1 norm of coherence. In addition, the amount of coherence measured by l1 norm of coherence for a Werner state is found to be always less than that for a maximally nonlocal mixed state even when they possess an equal amount of coherence measured by the relative entropy of coherence. In our study, we have also explored the connection between the above resource theory-based measures of coherence and the recently introduced first-order coherence and maximum first-order coherence measures for two-qubit systems. We find that while there seems to be no obvious connection between the resource theory-based measures and first-order and maximum first-order coherence, a correlation seems to exist between the maximum first-order coherence and concurrence, both of which are basis independent quantities. These observations could be of use in obtaining a deeper understanding of the interconnections between various measures of quantum coherence.

Keywords

Measures of quantum coherence X state Maximally nonlocal mixed states Ordering of states based on amount of coherence Coherence in two-qubit states 

Notes

Acknowledgements

AP thanks Department of Science and Technology (DST), India for the support provided through the project number EMR/2015/000393. SM thanks Guru Gobind Singh Indraprastha University for STRF. KT thanks the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic for support. AP and KT also thank A. Miranowicz, P. Panigrahi and J. Perina Jr. for some fruitful discussion and their interest in this work.

References

  1. 1.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  2. 2.
    Boyd, R.W.: Nonlinear Optics. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Miller, W.H.: Perspective: quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549, 203 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Svozilík, J., Vallés, A., Peřina Jr., J., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Korzekwa, K., Lostaglio, M., Oppenheim, J., Jennings, D.: The extraction of work from quantum coherence. New J. Phys. 18, 023045 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Henao, I., Serra, R.M.: Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E 97, 062105 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)CrossRefGoogle Scholar
  24. 24.
    Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  25. 25.
    Gauger, E.M., Rieper, E., Morton, J.J.L., Benjamin, S.C., Vedral, V.: Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Chuang, I.L., Vandersypen, L.M.K., Zhou, X., Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393, 143 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Miranowicz, A., Bartkiewicz, K., Pathak, A., Perina Jr., J., Chen, Y.N., Nori, F.: Statistical mixtures of states can be more quantum than their superpositions: comparison of nonclassicality measures for single-qubit states. Phys. Rev. A 91, 042309 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Miranowicz, A., Bartkiewicz, K., Lambert, N., Chen, Y.-N., Nori, F.: Increasing relative nonclassicality quantified by standard entanglement potentials by dissipation and unbalanced beam splitting. Phys. Rev. A 92, 062314 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Ku, H.Y., Chen, S.L., Budroni, C., Miranowicz, A., Chen, Y.N., Nori, F.: Einstein–Podolsky–Rosen steering: its geometric quantification and witness. Phys. Rev. A 97, 022338 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Liu, C.L., Yu, X.D., Xu, G.F., Tong, D.M.: Ordering states with coherence measures. Quantum Inf. Process. 15, 4189 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed ”X” states. Quantum Inf. Comput. 7, 459 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Quesada, N., Al-Qasimi, A., James, D.F.V.: Quantum properties and dynamics of X states. J. Mod. Opt. 59, 1322 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Mendonça, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit \(X\)-states. Ann. Phys. 351, 79 (2014)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Peters, N.A., Altepeter, J.B., Branning, D.A., Jeffrey, E.R., Wei, T.C., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Barbieri, M., De Martini, F., Di Nepi, G., Mataloni, P.: Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92, 177901 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Agarwal, G.S., Kapale, K.T.: Generation of Werner states via collective decay of coherently driven atoms. Phys. Rev. A 73, 022315 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Rau, A.R.P.: Manipulating two-spin coherences and qubit pairs. Phys. Rev. A 61, 032301 (2000)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Paul, T., Qureshi, T.: Measuring quantum coherence in multislit interference. Phys. Rev. A 95, 042110 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    Biswas, T., Díaz, M.G., Winter, A.: Interferometric visibility and coherence. Proc. R. Soc. A 473, 20170170 (2017)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Venugopalan, A., Mishra, S., Qureshi, T.: Monitoring decoherence via measurement of quantum coherence. Physica A 516, 308–316 (2019)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Erol, V., Ozaydin, F., Altintas, A.A.: Analysis of entanglement measures and locc maximized quantum fisher information of general two qubit systems. Sci. Rep. 4, 5422 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)ADSCrossRefGoogle Scholar
  57. 57.
    Kagalwala, K.H., Giuseppe, G.D., Abouraddy, A.F., Saleh, B.E.: Bell’s measure in classical optical coherence. Nat. Photonics 7, 72 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Fang, Y.N., Dong, G.H., Zhou, D.L., Sun, C.P.: Quantification of symmetry. Commun. Theor. Phys. 65, 423 (2016)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit \(X\) states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    Huang, Y.: Quantum discord for two-qubit \(X\) states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Rau, A.R.P.: Algebraic characterization of \(X\)-states in quantum information. J. Phys. A Math. Theor. 42, 412002 (2009)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Miszczak, J.A., Puchał, Z., Gawron, P.: Quantum information package for mathematica (2010). http://zksi.iitis.pl/wiki/projects:mathematica-qi. Accessed 5 Apr 2019
  70. 70.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  71. 71.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityDwarka, New DelhiIndia
  2. 2.Jaypee Institute of Information TechnologyNoidaIndia
  3. 3.RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations