Advertisement

Linear optical CNOT gate with orbital angular momentum and polarization

  • J. H. Lopes
  • W. C. Soares
  • Bertúlio de Lima Bernardo
  • D. P. Caetano
  • Askery CanabarroEmail author
Article
  • 160 Downloads

Abstract

It is well established in the theory of quantum computation that the controlled-NOT (CNOT) gate is a fundamental element in the construction of a quantum computer. Here, we propose and experimentally demonstrate within a classical light framework that a Mach–Zehnder interferometer composed of polarized beam splitters and a pentaprism in the place of one of the mirrors works as a linear optical quantum CNOT gate. To perform the information processing, the polarization and orbital angular momentum of light act as the control and target qubits, respectively. The readout process is simple, requiring only a linear polarizer and a triangular diffractive aperture prior to detection. The viability and stability of our experiment suggest that the present proposal is a valuable candidate for future implementations in optical quantum computation protocols.

Keywords

CNOT gate Light polarization Angular orbital momentum 

Notes

Acknowledgements

AC thanks UFAL for a paid license for scientific cooperation at UFRN, MEC/UFRN for a fellowship and the Brazilian funding agency CNPQ Universal Grant No. 423713/2016-7. BLB received financial support CNPq, Grant No. 309292/2016-6. WCS acknowledges the Brazilian funding agencies CAPES, FAPEAL and INCT-IQ.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).  https://doi.org/10.1103/PhysRevLett.67.661 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992).  https://doi.org/10.1103/PhysRevLett.69.2881 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).  https://doi.org/10.1103/PhysRevLett.70.1895 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 EP (2001).  https://doi.org/10.1038/35051009 ADSCrossRefGoogle Scholar
  6. 6.
    Bouwmeester, D., Ekert, A.K., Zeilinger, A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, 1st edn. Springer, Berlin (2010)zbMATHGoogle Scholar
  7. 7.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997).  https://doi.org/10.1137/S0097539795293172 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F.V., Gilchrist, A., White, A.G.: Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).  https://doi.org/10.1103/PhysRevLett.99.250505 ADSCrossRefGoogle Scholar
  9. 9.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).  https://doi.org/10.1103/RevModPhys.75.715 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005).  https://doi.org/10.1103/RevModPhys.76.1267 ADSCrossRefGoogle Scholar
  11. 11.
    de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. A 381(28), 2239 (2017).  https://doi.org/10.1016/j.physleta.2017.05.018 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Ao, E.F.G., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41(24), 5797 (2016).  https://doi.org/10.1364/OL.41.005797 ADSCrossRefGoogle Scholar
  13. 13.
    Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658 (2014).  https://doi.org/10.1007/s13538-014-0250-6 ADSCrossRefGoogle Scholar
  14. 14.
    Balthazar, W.F., Passos, M.H.M., Schmidt, A.G.M., Caetano, D.P., Huguenin, J.A.O.: Experimental realization of the quantum duel game using linear optical circuits. J. Phys. B At. Mol. Opt. Phys. 48(16), 165505 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995).  https://doi.org/10.1103/PhysRevA.51.1015 ADSCrossRefGoogle Scholar
  16. 16.
    Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010).  https://doi.org/10.1017/CBO9781139193658 CrossRefzbMATHGoogle Scholar
  17. 17.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).  https://doi.org/10.1103/RevModPhys.79.135 ADSCrossRefGoogle Scholar
  18. 18.
    Fiorentino, M., Wong, F.N.C.: Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93, 070502 (2004).  https://doi.org/10.1103/PhysRevLett.93.070502 ADSCrossRefGoogle Scholar
  19. 19.
    de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quantum Semiclass. Opt. 7(9), 288 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Deng, L.P., Wang, H., Wang, K.: Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B 24(9), 2517 (2007).  https://doi.org/10.1364/JOSAB.24.002517 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Zeng, Q., Li, T., Song, X., Zhang, X.: Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light. Opt. Express 24(8), 8186 (2016).  https://doi.org/10.1364/OE.24.008186 ADSCrossRefGoogle Scholar
  22. 22.
    Hickmann, J.M., Fonseca, E.J.S., Soares, W.C., Chávez-Cerda, S.: Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010).  https://doi.org/10.1103/PhysRevLett.105.053904 ADSCrossRefGoogle Scholar
  23. 23.
    Soares, W.C., Moura, A.L., Canabarro, A.A., de Lima, E., Hickmann, J.M.: Singular optical lattice generation using light beams with orbital angular momentum. Opt. Lett. 40(22), 5129 (2015).  https://doi.org/10.1364/OL.40.005129 ADSCrossRefGoogle Scholar
  24. 24.
    Melo, L.A., Jesus-Silva, A.J., Chávez-Cerda, S., Ribeiro, P.H.S., Soares, W.C.: Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture. Sci. Rep. 8(1), 6370 (2018).  https://doi.org/10.1038/s41598-018-24928-5 ADSCrossRefGoogle Scholar
  25. 25.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).  https://doi.org/10.1103/PhysRevA.45.8185 ADSCrossRefGoogle Scholar
  26. 26.
    Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161 (2011).  https://doi.org/10.1364/AOP.3.000161 CrossRefGoogle Scholar
  27. 27.
    Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008).  https://doi.org/10.1038/nphys919 CrossRefGoogle Scholar
  28. 28.
    Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248 (2016).  https://doi.org/10.1038/nphoton.2016.12 ADSCrossRefGoogle Scholar
  29. 29.
    Fickler, R., Campbell, G., Buchler, B., Lam, P.K., Zeilinger, A.: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. 113(48), 13642 (2016).  https://doi.org/10.1073/pnas.1616889113 ADSCrossRefGoogle Scholar
  30. 30.
    Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).  https://doi.org/10.1038/lsa.2017.146 CrossRefGoogle Scholar
  31. 31.
    Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).  https://doi.org/10.1103/PhysRevLett.113.060503 ADSCrossRefGoogle Scholar
  32. 32.
    Gonzalez Alonso, J.R., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326 (2013).  https://doi.org/10.1103/PhysRevA.88.022326 ADSCrossRefGoogle Scholar
  33. 33.
    Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013).  https://doi.org/10.1103/PhysRevA.88.012312 ADSCrossRefGoogle Scholar
  34. 34.
    Sasada, H., Okamoto, M.: Transverse-mode beam splitter of a light beam and its application to quantum cryptography. Phys. Rev. A 68, 012323 (2003).  https://doi.org/10.1103/PhysRevA.68.012323 ADSCrossRefGoogle Scholar
  35. 35.
    Berkhout, G.C.G., Lavery, M.P.J., Courtial, J., Beijersbergen, M.W., Padgett, M.J.: Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).  https://doi.org/10.1103/PhysRevLett.105.153601 ADSCrossRefGoogle Scholar
  36. 36.
    Lavery, M.P.J., Robertson, D.J., Berkhout, G.C.G., Love, G.D., Padgett, M.J., Courtial, J.: Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20(3), 2110 (2012).  https://doi.org/10.1364/OE.20.002110 ADSCrossRefGoogle Scholar
  37. 37.
    Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282 (2000).  https://doi.org/10.1126/science.290.5500.2282 ADSCrossRefGoogle Scholar
  38. 38.
    Li, Y., Humphreys, P.C., Mendoza, G.J., Benjamin, S.C.: Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015).  https://doi.org/10.1103/PhysRevX.5.041007 CrossRefGoogle Scholar
  39. 39.
    Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017).  https://doi.org/10.1063/1.4976737 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEx, Campus ArapiracaUniversidade Federal de AlagoasArapiracaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrazil
  4. 4.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  5. 5.Escola de Engenharia Industrial Metalúrgica de Volta RedondaUniversidade Federal FluminenseVolta RedondaBrazil
  6. 6.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations