Advertisement

Restricted distribution of quantum correlations in bilocal network

  • Kaushiki Mukherjee
  • Biswajit Paul
  • Debasis SarkarEmail author
Article
  • 28 Downloads

Abstract

Analyzing shareability of correlations arising in any physical theory may be considered as a fruitful technique of studying the theory. Our present topic of discussion involves an analogous approach of studying quantum theory. For our purpose, we have deviated from the usual procedure of assessing monogamous nature of quantum correlations in the standard Bell-CHSH scenario. We have considered correlations arising in a quantum network involving independent sources. Precisely speaking, we have analyzed monogamy of nonbilocal correlations by deriving a relation restricting marginals. Interestingly, restrictions constraining distribution of nonbilocal correlations remain same irrespective of whether inputs of the nodal observers are kept fixed (in different bilocal networks) while studying nonbilocal nature of marginal correlations.

Keywords

Quantum correlations Monogamy Bell locality Quantum network Bilocality 

Notes

References

  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1, 195 (1964)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bell, J.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  4. 4.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Bancal, J.-D., Gisin, N., Liang, Y.-C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Mayers, D., Yao, A.: Proceedings of the 39th IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, p. 503. Los Alamitos CA, USA (1998p)Google Scholar
  9. 9.
    Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 44, 095305 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59–69 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Sadhukhan, D., Roy, S.S., Rakshit, D., Sen, A., Sen, U.: Beating no-go theorems by engineering defects in quantum spin models. New J. Phys. 17, 043013 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Toner, B., Verstraete, F.: Monogamy of Bell correlations and Tsirelson’s bound, arXiv:quant-ph/0611001
  17. 17.
    Kurzynski, P., Paterek, T., Ramanathan, R., Laskowski, W., Kaszlikowski, D.: Correlation complementarity yields Bell monogamy relations. Phys. Rev. Lett. 106, 180402 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Kay, A., Kaszlikowski, D., Ramanathan, R.: Optimal cloning and singlet monogamy. Phys. Rev. Lett. 103, 050501 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    de Oliveira, T.R., Saguia, A., Sarandy, M.S.: Nonviolation of Bell’s inequality in translation invariant systems. Eur. Phys. Lett. 100(6), 60004 (2013)CrossRefGoogle Scholar
  20. 20.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Seevinck, M.: Classification and monogamy of three-qubit biseparable Bell correlations. Phys. Rev. A 76, 012106 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Lee, S., Park, J.: Monogamy of entanglement and teleportation capability. Phys. Rev. A 79, 054309 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Tavakoli, A., Skrzypczyk, P., Cavalcanti, D., Acín, A.: Nonlocal correlations in the star-network configuration. Phys. Rev. A 90, 062109 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Mukherjee, K., Paul, B., Sarkar, D.: Correlations in n-local scenario. Quantum Inf. Process. 14, 2025 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Chaves, R.: Polynomial Bell inequalities. Phys. Rev. Lett. 116, 010402 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Rosset, D., Branciard, C., Barnea, T.J., Putz, G., Brunner, N., Gisin, N.: Nonlinear Bell inequalities tailored for quantum networks. Phys. Rev. Lett. 116, 010403 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Mukherjee, K., Paul, B., Sarkar, D.: Revealing advantage in a quantum network. Quantum Inf. Process. 15(7), 2895–2921 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Mukherjee, K., Paul, B., Sarkar, D.: Nontrilocality: exploiting nonlocality from three-particle systems. Phys. Rev. A 96, 022103 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Tavakoli, A., Renou, M.O., Gisin, N., Brunner, N.: Correlations in star networks: from Bell inequalities to network inequalities. New J. Phys. 119, 073003 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Andreoli, F., Carvacho, G., Santodonato, L., Chaves, R., Sciarrino, F.: Maximal qubit violation of n-locality inequalities in a star-shaped quantum network. New J. Phys. 19, 113020 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Gisin, N., Mei, Q., Tavakoli, A., Renou, M.O., Brunner, N.: All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Marc-Olivier R.Y., Wang, S., Boreiri, S., Beigi, N., Gisin, N.: Limits on Correlations in Networks for Quantum and No-Signaling Resources. Brunner arXiv:1901.08287 [quantph] (2019)
  39. 39.
    Gisin, N., Gisin, B.: A local variable model for entanglement swapping exploiting the detection loophole. Phys. Lett. A 297, 279 (2002)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Greenberger, D.M., Horne, M., Zeilinger, A., Z̈ukowski, M.: Bell theorem without inequalities for two particles. II. Inefficient detectors. Phys. Rev. A 78, 022111 (2008)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Aćin, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)CrossRefGoogle Scholar
  42. 42.
    Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Hammerer, K., Sorensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Qin, H.H., Fei, S.M., Jost, X.L.: Trade-off relations of Bell violations among pairwise qubit systems. Phys. Rev. A 92, 062339 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Cirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsGovernment Girls’ General Degree CollegeEkbalpore, KolkataIndia
  2. 2.Department of MathematicsSouth Malda CollegeMaldaIndia
  3. 3.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations