IND-secure quantum symmetric encryption based on point obfuscation

  • Ranyiliu Chen
  • Tao ShangEmail author
  • Jianwei Liu


Quantum cryptography has developed some fundamental primitives on encryption of quantum data, such as quantum one-time pad and quantum IND (indistinguishability)-security. Compared with other terms in quantum cryptography, quantum obfuscation attracts less attention and is still in its infancy due to its difficulty in implementation and application. In this paper, we define a quantum point function, construct its obfuscation and then demonstrate the validity of applying quantum point obfuscation to quantum symmetric encryption scheme. We rigorously prove that IND-secure quantum symmetric encryption can be realized by quantum point obfuscators. Furthermore, with the properties of combinability or auxiliary inputs, a quantum point obfuscator can implement IND-CPA (indistinguishability under chosen plaintext attack)-secure quantum symmetric encryption or leakage-resilient quantum symmetric encryption, respectively. This work presents new usage of a quantum obfuscator and will complement the theory of quantum obfuscation.


Quantum cryptography Quantum obfuscation Quantum symmetric encryption IND-security 



This project was supported by the National Natural Science Foundation of China (No. 61571024) and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps.


  1. 1.
    Ambainis, A., Mosca, M., Tapp, A., Wolf, R.D.: Private quantum channels. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pp. 547–553 (2000)Google Scholar
  2. 2.
    Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Proceedings of Advances in Cryptology-CRYPTO 2015, pp. 609–629 (2015)Google Scholar
  3. 3.
    Desrosiers, S.P., Dupuis, F.: Quantum entropic security and approximate quantum encryption. IEEE Trans. Inf. Theory 56(7), 3455–3464 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dan, B., Özgür, D., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. Comput. Sci. 7073(1), 41–69 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Shang, T., Lei, Q., Liu, J.: Quantum random oracle model for quantum digital signature. Phys. Rev. A 94(4), 042314 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., Jules, M.St.: Computational security of quantum encryption. In: Proceedings of International Conference on Information Theoretic Security, pp. 47–71 (2016)Google Scholar
  7. 7.
    Alagic, G., Majenz, C.: Quantum non-malleability and authentication. In: Proceedings of International Conference on Information Theoretic Security, pp. 310–341 (2017)Google Scholar
  8. 8.
    Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable Quantum Encryption (2017). arXiv:1709.06539
  9. 9.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. Proc. Adv. Cryptol. CRYPTO 2001, 1–18 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hada, S.: Zero-knowledge and code obfuscation. Proc. Adv. Cryptol. ASIACRYPT 2000, 443–457 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In: Proceedings of the 46th Annual IEEE Symposium on the Foundations of Computer Science, pp. 553–562 (2005)Google Scholar
  12. 12.
    Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. Proc. Adv. Cryptol. EUROCRYPT 2004, 20–39 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ran, C., Kalai, Y.T., Varia, M., et al.: On symmetric encryption and point obfuscation. Lect. Notes Comput. Sci. 79(4), 52–71 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Alagic, G., Fefferman, B.: On quantum obfuscation (2016). arXiv preprint arXiv:1602.01771
  15. 15.
    Shang, T., Chen, R., Liu, J.: On the obfuscatability of quantum point functions. Quantum Inf. Process. 18(2), 55 (2019)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  2. 2.School of Cyber Science and TechnologyBeihang UniversityBeijingChina

Personalised recommendations