Advertisement

Generation of new structured beams via spatially dependent transparency

  • Jing Qiu
  • Zhiping WangEmail author
  • Benli Yu
Article
  • 40 Downloads

Abstract

We propose a new scheme for generating new structured beams via spatially dependent transparency in a three-level atomic system. Due to the joint quantum interference induced by Laguerre–Gaussian (LG) field and constant coupling field, we can achieve different spatially dependent beams by measuring the probe absorption intensity profiles. The proposed scheme may provide potential applications in optics and novel quantum technologies.

Keywords

Structured beam Atomic system Spatially dependent transparency 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11674002) and the State Scholarship Fund of China Scholarship Council (CSC) as a visiting scholar at University of Nottingham (File No. 201806505020). The authors acknowledge helpful advice and comments from the referees.

References

  1. 1.
    Xiao, M., Li, Y.Q., Jin, S.Z., Gea-Banacloche, J.: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Harris, S.E., Field, J.E., Kasapi, A.: Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  5. 5.
    Boller, K.J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Gea-Banacloche, J., Li, Y., Jin, S., Xiao, M.: Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A 51, 576 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Wu, Y., Yang, X.: Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Eisaman, M.D., André, A., Massou, F., Fleischhauer, M., Zibrov, A.S., Lukin, M.D.: Electromagnetically induced transparency with tunable single-photon pulses. Nature (London) 438, 837 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Li, H., Sautenkov, V.A., Rostovtsev, Y.V., Welch, G.R., Hemmer, P.R., Scully, M.O.: Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 92 (2009)Google Scholar
  11. 11.
    Fleischhauer, M., Imamoğlu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Yanik, M.F., Suh, W., Wang, Z., Fan, S.: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Heinze, G., Hubrich, C., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Julsgaard, B., Sherson, J., Cirac, J.I., Fiurásek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature (London) 432, 482 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Wu, Y., Saldana, J., Zhu, Y.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Brown, A.W., Xiao, M.: Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett. 99, 123603 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Khadka, U., Anderson, B., Xiao, M.: Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys. Rev. Lett. 102, 013601 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Joshi, A., Brown, A., Wang, H., Xiao, M.: Controlling optical bistability in a three-level atomic system. Phys. Rev. A 67, 041801(R) (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Radwell, N., Clark, T.W., Piccirillo, B., Barnett, S.M., Franke-Arnold, S.: Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett. 114, 123603 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Sharma, S., Dey, T.N.: Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration. Phys. Rev. A 96, 033811 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    Han, L., Cao, M., Liu, R.F., Liu, H., Guo, W.G., Wei, D., Gao, S.Y., Zhang, P., Gao, H., Li, F.: Identifying the orbital angular momentum of light based on atomic ensembles. Eur. Lett. 99, 34003 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Veissier, L., Nicolas, A., Giner, L., Maxein, D., Sheremet, A.S., Giacobino, E., Laurat, J.: Reversible optical memory for twisted photons. Opt. Lett. 38, 712 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Ding, D.-S., Zhang, W., Zhou, Z.-Y., Shi, S., Xiang, G.-Y., Wang, X.-S., Jiang, Y.-K., Shi, B.-S., Guo, G.-C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Steck, D.: 87Rb D line data (2015). http://steck.us/alkalidata
  31. 31.
    Pugatch, R., Shuker, M., Firstenberg, O., Ron, A., Davidson, N.: Topological stability of stored optical vortices. Phys. Rev. Lett. 98, 203601 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Moretti, D., Felinto, D., Tabosa, J.W.R.: Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161 (2011)CrossRefGoogle Scholar
  34. 34.
    Walker, G., Arnold, A.S., Franke-Arnold, S.: Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett. 108, 243601 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., Guo, G.-C.: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013)CrossRefGoogle Scholar
  36. 36.
    Nicolas, A., Veissier, L., Giner, L., Giacobino, E., Maxein, D., Laurat, J.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Chen, Y.-Y., Feng, X.-L., Liu, C.: Generation of nonlinear vortex precursors. Phys. Rev. Lett. 117, 023901 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Ruseckas, J., Juzeliūnas, G., Öhberg, P., Barnett, S.M.: Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Phys. Rev. A 76, 053822 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Hamedi, H.R., Ruseckas, J., Juzeliūnas, G.: Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup. Phys. Rev. A 98, 013840 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    Hamedi, H.R., Viaceslav, K., Ruseckas, J., Gediminas, J.: Azimuthal modulation of electromagnetically induce transparency using structured light. Opt. Express 26, 28249 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina
  2. 2.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations