Advertisement

Entanglement in block-scalable and block-scaled states

  • G. A. Bochkin
  • S. I. Doronin
  • A. I. ZenchukEmail author
Article
  • 34 Downloads

Abstract

There is a special class of so-called block-scalable initial states of the sender whose transfer to the receiver through the spin chain results in multiplying their MQ-coherence matrices by scalar factors (block-scaled receiver’s states). We study the entanglement in block-scalable and block-scaled states and show that generically the entanglement in block-scaled states is less than the entanglement in the corresponding block-scalable states, although the balance between these entanglements depends on particular values of parameters characterizing these states. Using the perturbations of the sender’s block-scalable initial states, we show that generically the entanglement in the block-scalable states is bigger, while the entanglement in the block-scaled states is less than the entanglements in the appropriate states from their neighborhoods. A short chain of 6 and a long chain of 42 spin-1/2 particles are considered as examples.

Keywords

Spin chain Remote state creation Block-scalable states Block-scaled states Quantum entanglement Perturbation of quantum state MQ-coherence matrices 

Notes

Acknowledgements

This work was performed in accordance with the state task, state registration No. 0089-2019-0002, and was partially supported by the program of the Presidium of RAS No. 5 “Photonic technologies in probing inhomogeneous media and biological objects”.

References

  1. 1.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Wójcik, A., Luczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. In: Meyers, R.E., Shih, Ya. (eds.) Quantum Communications and Quantum Imaging III, Proceedings of SPIE vol. 5893. SPIE, Bellingham, WA (2005)Google Scholar
  9. 9.
    Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Bochkin, G.A., Zenchuk, A.I.: Remote one-qubit-state control using the pure initial state of a two-qubit sender: selective-region and eigenvalue creation. Phys. Rev. A 91, 062326(11) (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Wei, J., Shi, L., Zhu, Yu., Xue, Ya., Xu, Zh, Jiang, J.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quant. Inf. Proc. 17, 70 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wei, J., Shi, L., Luo, J., Zhu, Y., Kang, Q., Yu, L., Wu, H., Jiang, J., Zhao, B.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quant. Inf. Proc. 17, 141 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wei, J., Shi, L., Ma, L., Xue, Ya., Zhuang, X., Kang, Q., Li, X.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quant. Inf. Proc. 16, 260 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shahandeh, F., Lund, A.P., Ralph, T.C., Vanner, M.R.: Arbitrary multi-qubit generation. New J. Phys. 18, 103020 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    VanMeter, N.M., Lougovski, P., Uskov, D.B., Kieling, K., Eisert, J., Dowling, J.P.: General linear-optical quantum state generation scheme: applications to maximally path-entangled states. Phys. Rev. A 76, 063808 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bochkin, G.A., Fel’dman, E.B., Zenchuk, A.I.: Transfer of scaled multiple-quantum coherence matrices. Quant. Inf. Proc. 17, 218 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fel’dman, E.B., Zenchuk, A.I.: Coherence evolution and transfer supplemented by sender’s initial-state restoring. JETP 125, 1042 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Zenchuk, A.I.: Information propagation in a quantum system: examples of open spin-1/2 chains. J. Phys. A Math. Theor. 45, 115306 (2012)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. A. Bochkin
    • 1
  • S. I. Doronin
    • 1
  • A. I. Zenchuk
    • 1
    Email author
  1. 1.Institute of Problems of Chemical PhysicsRASChernogolovkaRussia

Personalised recommendations