Advertisement

Continuous dynamical decoupling and decoherence-free subspaces for qubits with tunable interaction

  • İ. Yalçınkaya
  • B. Çakmak
  • G. Karpat
  • F. F. FanchiniEmail author
Article
  • 118 Downloads

Abstract

Protecting quantum states from the decohering effects of the environment is of great importance for the development of quantum computation devices and quantum simulators. Here, we introduce a continuous dynamical decoupling protocol that enables us to protect the entangling gate operation between two qubits from the environmental noise. We present a simple model that involves two qubits which interact with each other with a strength that depends on their mutual distance and generates the entanglement among them, as well as in contact with an environment. The nature of the environment, that is, whether it acts as an individual or common bath to the qubits, is also controlled by the effective distance of qubits. Our results indicate that the introduced continuous dynamical decoupling scheme works well in protecting the entangling operation. Furthermore, under certain circumstances, the dynamics of the qubits naturally led them into a decoherence-free subspace which can be used complimentary to the continuous dynamical decoupling.

Keywords

Open quantum systems Dynamical decoupling Quantum control Quantum gates 

Notes

Acknowledgements

İ.Y. is supported by the Project RVO 68407700 and RVO 14000 and funding from the project Centre for Advanced Applied Sciences, Registry No. CZ.02.1.01/0.0/0.0/16 019/0000778, supported by the Operational Programme Research, Development and Education, co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic. F.F.F. has been supported by the Brazilian agencies FAPESP under Grant No. 2017/07787-7, by CNPq under Grant No. 302280/2017-0, and by INCT-IQ. G.K. is supported by the BAGEP Award of the Science Academy and the GEBIP program of the Turkish Academy of Sciences (TUBA). G.K. is also supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 117F317.

References

  1. 1.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).  https://doi.org/10.1103/RevModPhys.75.715 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005).  https://doi.org/10.1103/RevModPhys.76.1267 ADSCrossRefGoogle Scholar
  3. 3.
    Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2(15023), 15023 (2015).  https://doi.org/10.1038/npjqi.2015.23 ADSCrossRefGoogle Scholar
  4. 4.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996).  https://doi.org/10.1103/PhysRevLett.77.793 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Washington, DC, USA, 1996), FOCS ’96, p. 56Google Scholar
  6. 6.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998).  https://doi.org/10.1103/PhysRevLett.81.2594 ADSCrossRefGoogle Scholar
  7. 7.
    Lidar, D.A., Whaley, K.B.: Decoherence-free subspaces and subsystems. In: Benatti, F., Floreanini, R. (eds.) Irreversible Quantum Dynamics. Lecture Notes in Physics, vol. 622, pp. 83–120. Springer, Berlin (2003)CrossRefGoogle Scholar
  8. 8.
    Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998).  https://doi.org/10.1103/PhysRevA.58.2733 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999).  https://doi.org/10.1103/PhysRevLett.82.2417 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zanardi, P.: Symmetrizing evolutions. Phys. Lett. A 258(2), 77 (1999).  https://doi.org/10.1016/S0375-9601(99)00365-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Byrd, M.S., Lidar, D.A.: Bang-bang operations from a geometric perspective. Quantum Inf. Process. 1(1), 19 (2002).  https://doi.org/10.1023/A:1019697017584 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Facchi, P., Tasaki, S., Pascazio, S., Nakazato, H., Tokuse, A., Lidar, D.A.: Control of decoherence: analysis and comparison of three different strategies. Phys. Rev. A 71, 022302 (2005).  https://doi.org/10.1103/PhysRevA.71.022302 ADSCrossRefGoogle Scholar
  13. 13.
    Khodjasteh, K., Lidar, D.A.: Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme. Phys. Rev. A 78, 012355 (2008).  https://doi.org/10.1103/PhysRevA.78.012355 ADSCrossRefGoogle Scholar
  14. 14.
    Khodjasteh, K., Viola, L.: Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501 (2009).  https://doi.org/10.1103/PhysRevLett.102.080501 ADSCrossRefGoogle Scholar
  15. 15.
    Khodjasteh, K., Viola, L.: Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A 80, 032314 (2009).  https://doi.org/10.1103/PhysRevA.80.032314 ADSCrossRefGoogle Scholar
  16. 16.
    Khodjasteh, K., Lidar, D.A., Viola, L.: Arbitrarily accurate dynamical control in open quantum systems. Phys. Rev. Lett. 104, 090501 (2010).  https://doi.org/10.1103/PhysRevLett.104.090501 ADSCrossRefGoogle Scholar
  17. 17.
    Lidar, D.A.: Review of decoherence free subspaces, noiseless subsystems, and dynamical decoupling. Adv. Chem. Phys. 154, 295 (2012). arXiv:1208.5791
  18. 18.
    Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, W.M., Bollinger, J.J.: Optimized dynamical decoupling in a model quantum memory. Nature 458(7241), 996 (2009).  https://doi.org/10.1038/nature07951 ADSCrossRefGoogle Scholar
  19. 19.
    Du, J., Rong, X., Zhao, N., Wang, Y., Yang, J., Liu, R.: Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461(7268), 1265 (2009).  https://doi.org/10.1038/nature08470 ADSCrossRefGoogle Scholar
  20. 20.
    Damodarakurup, S., Lucamarini, M., Di Giuseppe, G., Vitali, D., Tombesi, P.: Experimental inhibition of decoherence on flying qubits via “bang-bang” control. Phys. Rev. Lett. 103, 040502 (2009).  https://doi.org/10.1103/PhysRevLett.103.040502 ADSCrossRefGoogle Scholar
  21. 21.
    De Lange, G., Wang, Z., Riste, D., Dobrovitski, V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330(6000), 60 (2010).  https://doi.org/10.1126/science.1192739 ADSCrossRefGoogle Scholar
  22. 22.
    Souza, A.M., Álvarez, G.A., Suter, D.: Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).  https://doi.org/10.1103/PhysRevLett.106.240501 ADSCrossRefGoogle Scholar
  23. 23.
    Naydenov, B., Dolde, F., Hall, L.T., Shin, C., Fedder, H., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).  https://doi.org/10.1103/PhysRevB.83.081201 ADSCrossRefGoogle Scholar
  24. 24.
    Van der Sar, T., Wang, Z., Blok, M., Bernien, H., Taminiau, T., Toyli, D., Lidar, D., Awschalom, D., Hanson, R., Dobrovitski, V.: Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484(7392), 82 (2012).  https://doi.org/10.1038/nature10900 ADSCrossRefGoogle Scholar
  25. 25.
    Fonseca-Romero, K.M., Kohler, S., Hänggi, P.: Coherence stabilization of a two-qubit gate by AC fields. Phys. Rev. Lett. 95, 140502 (2005).  https://doi.org/10.1103/PhysRevLett.95.140502 ADSCrossRefGoogle Scholar
  26. 26.
    Chen, P.: Geometric continuous dynamical decoupling with bounded controls. Phys. Rev. A 73, 022343 (2006).  https://doi.org/10.1103/PhysRevA.73.022343 ADSCrossRefGoogle Scholar
  27. 27.
    Clausen, J., Bensky, G., Kurizki, G.: Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys. Rev. Lett. 104, 040401 (2010).  https://doi.org/10.1103/PhysRevLett.104.040401 ADSCrossRefGoogle Scholar
  28. 28.
    Xu, X., Wang, Z., Duan, C., Huang, P., Wang, P., Wang, Y., Xu, N., Kong, X., Shi, F., Rong, X., Du, J.: Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).  https://doi.org/10.1103/PhysRevLett.109.070502 ADSCrossRefGoogle Scholar
  29. 29.
    Fanchini, F.F., Hornos, J.E.M., Napolitano, RdJ: Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons. Phys. Rev. A 75, 022329 (2007).  https://doi.org/10.1103/PhysRevA.75.022329 ADSCrossRefGoogle Scholar
  30. 30.
    Fanchini, F.F., Napolitano, RdJ: Continuous dynamical protection of two-qubit entanglement from uncorrelated dephasing, bit flipping, and dissipation. Phys. Rev. A 76, 062306 (2007).  https://doi.org/10.1103/PhysRevA.76.062306 ADSCrossRefGoogle Scholar
  31. 31.
    Fanchini, F.F., Napolitano, RdJ, Çakmak, B., Caldeira, A.O.: Protecting the \(\sqrt{SWAP}\) operation from general and residual errors by continuous dynamical decoupling. Phys. Rev. A 91, 042325 (2015).  https://doi.org/10.1103/PhysRevA.91.042325 ADSCrossRefGoogle Scholar
  32. 32.
    Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302 (2009).  https://doi.org/10.1103/PhysRevB.79.041302 ADSCrossRefGoogle Scholar
  33. 33.
    Chaudhry, A.Z., Gong, J.: Decoherence control: universal protection of two-qubit states and two-qubit gates using continuous driving fields. Phys. Rev. A 85, 012315 (2012).  https://doi.org/10.1103/PhysRevA.85.012315 ADSCrossRefGoogle Scholar
  34. 34.
    Cai, J., Naydenov, B., Pfeiffer, R., McGuinness, L.P., Jahnke, K.D., Jelezko, F., Plenio, M.B., Retzker, A.: Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14(11), 113023 (2012).  https://doi.org/10.1088/1367-2630/14/11/113023 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Laraoui, A., Meriles, C.A.: Rotating frame spin dynamics of a nitrogen-vacancy center in a diamond nanocrystal. Phys. Rev. B 84, 161403 (2011).  https://doi.org/10.1103/PhysRevB.84.161403 ADSCrossRefGoogle Scholar
  36. 36.
    Bermudez, A., Jelezko, F., Plenio, M.B., Retzker, A.: Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. Phys. Rev. Lett. 107, 150503 (2011).  https://doi.org/10.1103/PhysRevLett.107.150503 ADSCrossRefGoogle Scholar
  37. 37.
    Bermudez, A., Schmidt, P.O., Plenio, M.B., Retzker, A.: Robust trapped-ion quantum logic gates by continuous dynamical decoupling. Phys. Rev. A 85, 040302 (2012).  https://doi.org/10.1103/PhysRevA.85.040302 ADSCrossRefGoogle Scholar
  38. 38.
    Timoney, N., Baumgart, I., Johanning, M., Varón, A., Plenio, M., Retzker, A., Wunderlich, C.: Quantum gates and memory using microwave-dressed states. Nature 476(7359), 185 (2011).  https://doi.org/10.1038/nature10319 ADSCrossRefGoogle Scholar
  39. 39.
    Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1 (2013).  https://doi.org/10.1016/j.physrep.2013.02.001 ADSCrossRefGoogle Scholar
  40. 40.
    Albrecht, A., Koplovitz, G., Retzker, A., Jelezko, F., Yochelis, S., Porath, D., Nevo, Y., Shoseyov, O., Paltiel, Y., Plenio, M.B.: Self-assembling hybrid diamond-biological quantum devices. New J. Phys. 16(9), 093002 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Golter, D.A., Baldwin, T.K., Wang, H.: Protecting a solid-state spin from decoherence using dressed spin states. Phys. Rev. Lett. 113, 237601 (2014).  https://doi.org/10.1103/PhysRevLett.113.237601 ADSCrossRefGoogle Scholar
  42. 42.
    Bacon, D., Kempe, J., Lidar, D.A., Whaley, K.B.: Universal fault-tolerant quantum computation on decoherence-free subspaces. Phys. Rev. Lett. 85, 1758 (2000).  https://doi.org/10.1103/PhysRevLett.85.1758 ADSCrossRefGoogle Scholar
  43. 43.
    Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001).  https://doi.org/10.1103/PhysRevA.63.042307 ADSCrossRefGoogle Scholar
  44. 44.
    Kielpinski, D., Meyer, V., Rowe, M.A., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: A decoherence-free quantum memory using trapped ions. Science 291(5506), 1013 (2001).  https://doi.org/10.1126/science.1057357 ADSCrossRefGoogle Scholar
  45. 45.
    Viola, L., Fortunato, E.M., Pravia, M.A., Knill, E., Laflamme, R., Cory, D.G.: Experimental realization of noiseless subsystems for quantum information processing. Science 293(5537), 2059 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Boulant, N., Pravia, M.A., Fortunato, E.M., Havel, T.F., Cory, D.G.: Experimental concatenation of quantum error correction with decoupling. Quantum Inf. Process. 1(1), 135 (2002).  https://doi.org/10.1023/A:1019623208633 CrossRefGoogle Scholar
  47. 47.
    Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003).  https://doi.org/10.1103/PhysRevLett.91.187903 ADSCrossRefGoogle Scholar
  48. 48.
    Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004).  https://doi.org/10.1103/PhysRevLett.92.107901 ADSCrossRefGoogle Scholar
  49. 49.
    Altepeter, J.B., Hadley, P.G., Wendelken, S.M., Berglund, A.J., Kwiat, P.G.: Experimental investigation of a two-qubit decoherence-free subspace. Phys. Rev. Lett. 92, 147901 (2004).  https://doi.org/10.1103/PhysRevLett.92.147901 ADSCrossRefGoogle Scholar
  50. 50.
    Langer, C., Ozeri, R., Jost, J.D., Chiaverini, J., DeMarco, B., Ben-Kish, A., Blakestad, R.B., Britton, J., Hume, D.B., Itano, W.M., Leibfried, D., Reichle, R., Rosenband, T., Schaetz, T., Schmidt, P.O., Wineland, D.J.: Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Riebe, M., Roos, C.F., Häffner, H., Hänsel, W., Hennrich, M., Blatt, R.: Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009).  https://doi.org/10.1103/PhysRevLett.103.200503 ADSCrossRefGoogle Scholar
  52. 52.
    Wang, F., Huang, Y.Y., Zhang, Z.Y., Zu, C., Hou, P.Y., Yuan, X.X., Wang, W.B., Zhang, W.G., He, L., Chang, X.Y., Duan, L.M.: Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system. Phys. Rev. B 96, 134314 (2017).  https://doi.org/10.1103/PhysRevB.96.134314 ADSCrossRefGoogle Scholar
  53. 53.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).  https://doi.org/10.1103/PhysRevA.57.120 ADSCrossRefGoogle Scholar
  54. 54.
    Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180 (2005).  https://doi.org/10.1126/science.1116955 ADSCrossRefGoogle Scholar
  55. 55.
    Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999).  https://doi.org/10.1103/PhysRevB.59.2070 ADSCrossRefGoogle Scholar
  56. 56.
    Usaj, G., Balseiro, C.: Design and control of spin gates in two quantum-dot arrays. Appl. Phys. Lett. 88(10), 103103 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Anderlini, M., Lee, P.J., Brown, B.L., Sebby-Strabley, J., Phillips, W.D., Porto, J.V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448(7152), 452 (2007).  https://doi.org/10.1038/nature06011 ADSCrossRefGoogle Scholar
  58. 58.
    DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408(6810), 339 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001).  https://doi.org/10.1103/RevModPhys.73.357 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departments of Physics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePraha 1-Staré MěstoCzech Republic
  2. 2.Department of PhysicsKoç UniversityIstanbul, SarıyerTurkey
  3. 3.College of Engineering and Natural SciencesBahçeşehir UniversityBeşiktaş, IstanbulTurkey
  4. 4.Department of Physics, Faculty of Arts and SciencesIzmir University of EconomicsIzmirTurkey
  5. 5.Faculdade de CiênciasUNESP - Universidade Estadual PaulistaBauruBrazil

Personalised recommendations