Advertisement

Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state

  • Chaoyang Li
  • Xiubo ChenEmail author
  • Hengji Li
  • Yuguang Yang
  • Jian Li
Article
  • 61 Downloads

Abstract

Quantum private comparison (QPC) protocol can guarantee the two participants to compare the equality of their private information without leaking them. Based on the entanglement swapping between the four-qubit cluster state and extended Bell state, an efficient QPC protocol has been proposed. Three bits of the secret inputs have been compared in each comparison time, which improves the efficiency compared with the previous QPC protocols’ one or two bits. Then, based on a random sequence pre-shared between the two participants, the semi-honest third party can only execute the protocol’s process without obtaining the information of the participants’ secrets and comparison results. Last, various kinds of attacks have been analyzed, which show that the proposed protocol is secure against the outside and participants attacks.

Keywords

Quantum private comparison Entanglement swapping Cluster state Semi-honest third party 

Notes

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. U1636106 and 61671087), Natural Science Foundation of Beijing Municipality under Grant 4182006, The Major Science and Technology Support Program of Guizhou Province under Grant 20183001, The Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant 2018BDKFJJ016 and BUPT Excellent Ph.D. Students Foundation (Grant No. CX2019227).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Li, J., Li, N., Zhang, Y., Wen, S., et al.: Special issue on quantum communication: a survey on quantum cryptography. Chin. J. Electron. 27(2), 223–228 (2018)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Communication via one and two particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6(28767), 1–6 (2016)Google Scholar
  6. 6.
    Li, L.L., Li, J., Li, H.J., Tian, Y., Zheng, Y., Yang, Y.G.: Deterministic quantum secure direct communication protocol based on Omega state. IEEE Access 7, 6915–6921 (2019)CrossRefGoogle Scholar
  7. 7.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., et al.: Cryptanalysis of secret sharing with a single \(d\)-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 19 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yang, Y.G., Lei, A.H., Liu, A.Z., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
  15. 15.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar
  16. 16.
    Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, Cloudcroft, America, pp. 13–22. ACM, New York (2001)Google Scholar
  17. 17.
    Shor, Peter W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bonanome, M., Bužek, V., Hillery, M., et al.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 022331 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Economical quantum anonymous transmissions. J. Phys. B At. Mol. Opt. Phys. 43(24), 245501 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751–780 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Zhao, Z., Naseri, M., Zheng, Y.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Jia, H.Y., Wen, Q.Y., Song, T.T., et al.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wen, L., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with \(W\) state. Opt. Commun. 284(12), 3160–3163 (2011)ADSGoogle Scholar
  30. 30.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Li, J., Zhou, H.F., Jia, L., et al.: An efficient protocol for the private comparison of equal information based on four-particle entangled \(W\) state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wei, H., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Chen, X.B., Dou, Z., Xu, G., et al.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Liu, X., Zhang, B., Wang, J., et al.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13(1), 71–84 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Li, J., Jia, L., Zhou, H.F., et al.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle \(W\)-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)zbMATHGoogle Scholar
  36. 36.
    Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between \(\chi ^+\) state and \(W\)-class state. Quantum Inf. Process. 16(12), 302 (2017)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Xu, L., Wang, J., Ahmed, H., et al.: A new quantum private comparison protocol. In: AOPC 2017: Fiber Optic Sensing and Optical Communications. International Society for Optics and Photonics, vol. 10464, p. 104640M (2017)Google Scholar
  38. 38.
    Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the quantum private comparison protocol based on the entanglement swapping between three-particle \(W\)-class state and Bell state. Int. J. Theor. Phys. 57(6), 1–7 (2018)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71(3), 032350 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Walther, P., Resch, K.J., Rudolph, T., et al.: Experimental one-way quantum computing. Nature 434(7030), 169 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chaoyang Li
    • 1
    • 2
  • Xiubo Chen
    • 1
    Email author
  • Hengji Li
    • 2
  • Yuguang Yang
    • 3
  • Jian Li
    • 2
  1. 1.Information Security Center, State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Computer ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations