Advertisement

Quantum secret sharing affected by vacuum fluctuation

  • Zhiming HuangEmail author
Article
  • 9 Downloads

Abstract

Quantum secret sharing (QSS) as an important protocol of secure multiparty quantum computation plays a vital role in quantum cryptography. In the real world, any quantum communication protocols are inevitably affected by external noisy environment. In this paper, we investigate the influence of vacuum fluctuation of a massless scalar field on QSS. We firstly construct the noisy model of QSS via two uniformly accelerated atoms coupled with a fluctuating massless scalar field with a perfectly reflecting plane boundary and then derive the master equation that governs the QSS evolution. It is shown that fluctuation of scalar field would lower the performance of QSS. Furthermore, we analyze the impacts of acceleration, two-atom separation and distance from the boundary on the QSS. It is found that increasing acceleration weakens the QSS performance, but in the presence of the reflecting boundary, QSS performance can be improved effectively.

Keywords

Quantum secret sharing Massless scalar field Reflecting boundary Unruh effect 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), the Doctoral Program of Guangdong Natural Science Foundation (2016A030310001) and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010).

References

  1. 1.
    Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, C.M., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, J., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Jia, H.Y., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035 (2012)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331 (2013)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Qin, H., Dai, Y.: Dynamic quantum secret sharing by using \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Song, Y., Li, Z., Li, Y.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf. Process. 17, 244 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    Benatti, F., Floreanini, R.: Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect. Phys. Rev. A 70, 012112 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D 75, 104014 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Audretsch, J., Muller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Vacuum fluctuations and radiation reaction: identification of their respective contributions. J. Phys. 43, 1617 (1982)CrossRefGoogle Scholar
  22. 22.
    Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Dynamics of a small system coupled to a reservoir: reservoir fluctuations and self-reaction. J. Phys. 45, 637 (1984)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  24. 24.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  27. 27.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Press of University of Cambridge, Cambridge (2000)zbMATHGoogle Scholar
  28. 28.
    Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  30. 30.
    Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B. 78, 214414 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Huang, Z.M., Tian, Z.H.: Dynamics of quantum correlation in de Sitter spacetime. J. Phys. Soc. Jpn. 86, 094003 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Huang, Z.M., Zhang, C., Zhang, W., Zhao, L.H.: Equivalence of quantum resource measures for X states. Int. J. Theor. Phys. 56, 3615 (2017)CrossRefGoogle Scholar
  39. 39.
    Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Huang, Z.M., Situ, H.Z.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Huang, Z.M.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Huang, Z.M.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process. 17, 73 (2018)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Huang, Z.M.: Protecting quantum Fisher information in curved space–time. Eur. Phys. J. Plus 133, 101 (2018)CrossRefGoogle Scholar
  44. 44.
    Huang, Z.M., Situ, H.Z.: Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field. Quantum Inf. Process. 18, 38 (2019)ADSCrossRefGoogle Scholar
  45. 45.
    Huang, Z.M., Situ, H.Z.: Protection of quantum dialogue affected by quantum field. Quantum Inf. Process. 18, 37 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina

Personalised recommendations