Establishing quantum steerability on cavity arrays coupled by optical fibers with open boundary conditions

  • Ye-Qi ZhangEmail author
  • Yong-Tao Sun


We study quantum steerability on one-dimensional cavity array systems with open boundary conditions, where each cavity is doped with a two-level atom and coupled with its neighbor nodes by optical fibers. In the far off-resonant condition, we obtain explicit expressions for the dynamical evolution of the array system with arbitrary number of nodes. By investigating the steerable weight for two-node subsystems, we show that remote quantum steerability can be established through both single-array and double independent arrays. Moreover, comparisons between quantum steerability and quantum entanglement in this model are also examined.


Quantum steering Cavity arrays Quantum correlations Open boundary conditions 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11805065, 11247308 and 11364006, the Natural Science and Technology Foundation of Guizhou Province under Grant Nos. [2017]7343 and [2013]2231, the Natural Science and Technology Foundation of the Education Department of Guizhou Province under Grant No. [2014]242, and also by the Fundamental Research Funds for the Central Universities.


  1. 1.
    Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
    Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 32(3), 446 (1936)ADSCrossRefGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photon. 6, 596599 (2012)CrossRefGoogle Scholar
  6. 6.
    Gallego, R., Aolita, L.: Resource theory of steering. Phys. Rev. X 5, 041008 (2015)zbMATHGoogle Scholar
  7. 7.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)ADSCrossRefGoogle Scholar
  8. 8.
    He, Q.Y., Reid, M.D.: Genuine multipartite Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 111, 250403 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cavalcanti, E.G., Jonesm, S.J., Wisemanm, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)CrossRefGoogle Scholar
  13. 13.
    Bennet, A.J., Evans, D.A., Saunders, D.J., Branciard, C., Cavalcanti, E.G., Wiseman, H.M., Pryde, G.J.: Arbitrarily loss-tolerant Einstein–Podolsky–Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2, 031003 (2012)Google Scholar
  14. 14.
    Evans, D.A., Wiseman, H.M.: Optimal measurements for tests of Einstein–Podolsky–Rosen steering with no detection loophole using two-qubit Werner states. Phys. Rev. A 90, 012114 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Skrzypczyk, P., Cavalcanti, D.: Loss-tolerant Einstein–Podolsky–Rosen steering for arbitrary-dimensional states: joint measurability and unbounded violations under losses. Phys. Rev. A 92, 022354 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Skrzypczyk, P., Navascus, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Quantification of Gaussian quantum steering. Phys. Rev. Lett. 114, 060403 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Kogias, I., Adesso, G.: Einstein–Podolsky–Rosen steering measure for two-mode continuous variable states. J. Opt. Soc. Am. B 32, A27 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature (London) 484, 195 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, J.F., Long, G.L., Zhang, W., Deng, Z.W., Liu, W.Z., Lu, Z.H.: Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 72, 012331 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Kimble, H.: The quantum internet. Nature (London) 453, 1023 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Douglas, J.S., Habibian, H., Hung, C.-L., Gorshkov, A.V., Kimble, H.J., Chang, D.E.: Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Qin, W., Nori, F.: Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A 93, 032337 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Lombardo, F., Ciccarello, F., Palma, G.M.: Photon localization versus population trapping in a coupled-cavity array. Phys. Rev. A 89, 053826 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Xiong, S.J., Zhang, Y., Sun, Z., Yu, L., Sun, Q., Xu, X.Q., Jin, J.S., Xu, Q., Liu, J.M., Chen, K., Yang, C.: Experimental simulation of a quantum channel without the rotating-wave approximation: testing quantum temporal steering. Optica 4, 1065 (2017)CrossRefGoogle Scholar
  31. 31.
    Liu, B., Huang, Y., Sun, Z.: Quantum temporal steering in a dephasing channel with quantum criticality. Ann. Phys. (Berlin) 530, 1700373 (2018)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun, Z., Xu, X.Q., Liu, B.: Creation of quantum steering by interaction with a common bath. Phys. Rev. A 97, 052309 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Chen, S.L., Lambert, N., Li, C.M., Chen, G.Y., Chen, Y.N., Miranowicz, A., Nori, F.: Spatio-temporal steering for testing nonclassical correlations in quantum networks. Sci. Rep. 7, 3728 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Chen, L., Zhang, Y.Q.: Quantum steering in magnetic Heisenberg models at finite temperature. EPL 120, 60007 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, Y.Q., Sun, Y.T., Chen, L.: Dynamics of quantum steerability for two atoms in coupled cavities. J. Modern Opt. 65, 2011–6 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Progress Phys. 80, 024001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  38. 38.
    Pellizzari, T.: Quantum networking with optical fibers. Phys. Rev. Lett. 79, 5242–5 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Giampaolo, S.M., Illuminati, F.: Long-distance entanglement and quantum teleportation in coupled-cavity arrays. Phys. Rev. A 80, 050301(R) (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Imamoḡlu, A., Woods, S.G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–66 (1967)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856–71 (1964)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Hu, Z.D., Zhang, Y.Q., Xu, J.B.: Quantum communication through open-ended quantum networks. J. Phys. A Math. Theor. 44, 425303 (2011)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–8 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A 80, 014301 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Houck, A.A., Schuster, D.I., Gambetta, J.M., Schreier, J.A., Johnson, B.R., Chow, J.M., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Generating single microwave photons in a circuit. Nature (London) 449, 328 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Gordon, K.J., Fernandez, V., Townsend, P.D., Buller, G.S.: A short wavelength gigahertz clocked fiber-optic quantum key distribution system. IEEE J. Quantum Electron. 40, 900 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBeijingChina

Personalised recommendations