Advertisement

Enhancing precision of damping rate by PT symmetric Hamiltonian

  • Dong XieEmail author
  • Chunling Xu
Article
  • 10 Downloads

Abstract

We utilize quantum Fisher information to investigate the damping parameter precision of a dissipative qubit. PT symmetric non-Hermitian Hamiltonian is used to enhance the parameter precision in two models: one is direct PT symmetric quantum feedback; the other is that the damping rate is encoded into a effective PT symmetric non-Hermitian Hamiltonian conditioned on the absence of decay events. We find that compared with the case without feedback and with Hermitian quantum feedback, direct PT symmetric non-Hermitan quantum feedback can obtain better precision of damping rate. And in the second model, the result shows that the uncertainty of damping rate can be close to 0 at the exceptional point. We also obtain that non-maximal multiparticle entanglement can improve the precision to reach Heisenberg limit.

Keywords

PT symmetric Hamiltonian Quantum Fisher information Estimation precision Damping rate 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 11747008 and Guangxi Natural Science Foundation 2016GXNSFBA380227.

References

  1. 1.
    Giovannetti, V., Lloyd, S., Maccone, L.: Metrology, quantum. Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Xie, D., Wang, A.: Quantum metrology in correlated environments. Phys. Lett. A 378, 2079 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with \(10^{-18}\) Instabilityi. Science 341, 1215 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Bongs, K., Launay, R., Kasevich, M.A.: High-order inertial phase shifts for time-domain atom interferometers. Appl. Phys. B 84, 599 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Carlton, P.M., Boulanger, J., Kervrann, C., Sibarita, J.-B., Salamero, J., Gordon-Messer, S., Bressan, D., Haber, J.E., Haase, S., Shao, L., et al.: Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. 107, 16016 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.-A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photon. 7, 229 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Abadie, J., et al.: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962 (2011)CrossRefGoogle Scholar
  10. 10.
    Aasi, J., et al.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D.: High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810 (2008)CrossRefGoogle Scholar
  12. 12.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)zbMATHGoogle Scholar
  13. 13.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Salvatori, G., Mandarino, A., Paris, M.G.A.: Quantum metrology in Lipkin–Meshkov–Glick critical systems. Phys. Rev. A 90, 022111 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Dorner, U., Demkowicz-Dobrzanski, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Dorner, U.: Quantum frequency estimation with trapped ions and atoms. New J. Phys. 14, 043011 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Tan, Q.S., Huang, Y.X., Yin, X.L., Kuang, L.M., Wang, X.G.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Vidrighin, M.D., Donati, G., Genoni, M.G., Jin, X.M., Kolthammer, W.S., Kim, M.S., Datta, A., Barbieri, M., Walmsley, I.A.: Joint estimation of phase and phase diffusion for quantum metrology. Nat. Commun. 5, 3532 (2014)CrossRefGoogle Scholar
  26. 26.
    Xie, D., Chunling, X., Wang, A.: Optimal quantum thermometry by dephasing. Quantum Inf. Process. 16, 155 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zheng, Q., Ge, L., Yao, Y., Zhi, Q.-J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Ji, Y.Q., Qin, M., Shao, X.Q., Yi, X.X.: Enhanced exciton transmission by quantum-jump-based feedback. Phys. Rev. A 96, 043815 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Ma, S.-Q., Zhu, H.-J., Zhang, G.: The effects of different quantum feedback operator types on the parameter precision of detection efficiency in optimal quantum estimation (2017). arXiv:1702.06229
  30. 30.
    Schäfermeier, C., Kerdoncuff, H., Hoff, U.B., Fu, H., Huck, A., Bilek, J., Harris, G.I., Bowen, W.P., Gehring, T., Andersen, U.L.: Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light. Nat. Commun. 7, 13628 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Mazzucchi, G., Caballero-Benitez, S.F., Ivanov, D.A., Mekhov, I.B.: Quantum optical feedback control for creating strong correlations in many-body systems. Optica 3(11), 1213–1219 (2016)CrossRefGoogle Scholar
  32. 32.
    Lee, T.E., Reiter, F., Moiseyev, N.: Entanglement and spin squeezing in non-Hermitian phase transitions. Phys. Rev. Lett. 113, 250401 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Hou, Tie-Jun: Quantum Fisher information and spin squeezing of the non-Hermitian one-axis twisting model and the effect of dephasing. Phys. Rev. A 95, 013824 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A 32, 2663 (1999)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Carvalho, A.R.R., Hope, J.J.: Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A 76, 010301(R) (2007)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Li, J.G., Zou, J., Shao, B., Cai, J.F.: Steady atomic entanglement with different quantum feedbacks. Phys. Rev. A 77, 012339 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Wang, L.C., Huang, X.L., Yi, X.X.: Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A 78, 052112 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Li, Y., Luo, B., Guo, H.: Entanglement and quantum discord dynamics of two atoms under practical feedback control. Phys. Rev. A 84, 012316 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Yan, Y., Zou, J., Xu, B.-M., Li, J.G., Shao, B.: Measurement-based direct quantum feedback control in an open quantum system. Phys. Rev. A 88, 032320 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Huang, S.Y., Goan, H.S., Li, X.Q., Milburn, G.J.: Generation and stabilization of a three-qubit entangled W state in circuit QED via quantum feedback control. Phys. Rev. A 88, 062311 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Sun, H.Y., Shu, P.L., Li, C., Yi, X.X.: Feedback control on geometric phase in dissipative two-level systems. Phys. Rev. A 79, 022119 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parityCtime symmetry in optics. Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  45. 45.
    Gao, T., Estrecho, E., Bliokh, K.Y., Liew, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A.: Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature (London) 526, 554 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Liu, Z.-P., Zhang, J., Özdemir, S.K., Peng, B., Jing, H., Lü, X.-Y., Li, C.-W., Yang, L., Nori, F., Liu, Y-x: Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett 117, 110802 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Li, J., Harter, A.K., Liu, J., de Melo, L., Joglekar, Y.N., Luo, L.: Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms (2016). hyperimagehttp://arxiv.org/abs/1608.05061arXiv:1608.05061Google Scholar
  48. 48.
    Tang, J.-S., Wang, Y.T., Yu, S., He, D.Y., Xu, J.S., Liu, B.H., Chen, G., Sun, Y.N., Sun, K., Han, Y.J., Li, C.-F., Guo, G.-G.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. Photon. 10, 642 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Wiersig, J.: Sensors operating at exceptional points: general theory. Phys. Rev. A 93, 033809 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Kawabata, K., Ashida, Y., Ueda, M.: Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 119, 190401 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    Dorje, C.: Brody and Eva-Maria Graefe, Mixed-State evolution in the presence of gain and loss. Phys. Rev. Lett. 109, 230405 (2012)CrossRefGoogle Scholar
  52. 52.
    Li, J., Liu, J., Xu, W., de Melo, L., Luo, L.: Parametric cooling of a degenerate Fermi gas in an optical trap. Phys. Rev. A 93, 041401 (2016). (R)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceGuilin University of Aerospace TechnologyGuilinPeople’s Republic of China

Personalised recommendations