Entanglement protection in Jaynes–Cummings model

  • M. A. FasihiEmail author
  • B. Mojaveri


In this work, we study the control of dynamics of entanglement and its protection in different Jaynes–Cummings models. To preserve atom–field entanglement in Jaynes–Cummings model and its extension to two-photon Jaynes–Cummings model, we apply a scheme which is based on the parity kick. In fact, the scheme is based on the anti-symmetry properties of the Hamiltonian of system. We also apply the method to protect atom–atom entanglement for a system of two two-level atoms inside a single-mode cavity. The control process of entanglement dynamics is implemented as a sequence of cyclic evolutions and makes it possible to protect the atom–field and atom–atom entanglements for any given initial state with desired long time.


Quantum control Entanglement protection Control of entanglement dynamics Atom–atom entanglement Atom–field dynamics Jaynes–Cummings Model 



  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Cirac, J.I., Ekert, A.K., Macchiavello, C.: Optimal purification of single qubits. Phys. Rev. Lett. 82, 4344–4347 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Lidar, D.A., Wu, L.-A.: Encoded recoupling and decoupling: an alternative to quantum error-correcting codes applied to trapped-ion quantum computation. Phys. Rev. A 67, 032313 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)Google Scholar
  7. 7.
    Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Deepak Dhar, L., Grover, K., Roy, S.M.: Preserving quantum states using inverting pulses: a super-Zeno effect. Phys. Rev. Lett. 96, 100405 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Maniscalco, S., Francica, F., Zaffino, R.L., Lo Gullo, N., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Rossi, R., Bosco de Magalhaes, A.R., Nemes, M.C.: Quantum Zeno effect in cavity quantum electrodynamics: experimental proposal with nonideal cavities and detectors. Phys. Rev. A 77, 012107 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Xiao, X., Li, Y.-L.: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Xiao, X.: Protecting qubitqutrit entanglement from amplitude damping decoherence via weak measurement and reversal. Phys. Scr. 89, 065102 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    White, T.C., Mutus, J.Y., Dressel, J., Kelly, J., Barends, R., Jeffrey, E., Sank, D., Megrant, A., Campbell, B., Chen, Yu., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.-C., Neill, C., OMalley, P.J.J., Roushan, P., Vainsencher, A., Wenner, J., Korotkov, A.N., Martinis, J.M.: Preserving entanglement during weak measurement demonstrated with a violation of the Bell–Leggett–Garg inequality. NPJ Quant. Inf. 2, 15022 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Hu, Y.-H., Tao, Y.-P., Tan, Y.-G., Yang, H.-F.: Weak measurement-based entanglement protection of two-qubit X-states from amplitude damping decoherence. Int. J. Theor. Phys. 56, 1504–1516 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huang, Z., Zhang, C.: Protecting quantum correlation from correlated amplitude damping channel. Braz. J. Phys. 47, 400 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Huang, Z., Situ, H.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)CrossRefGoogle Scholar
  17. 17.
    Huang, Z., Rong, Z., Zou, X., Situ, H., Zhao, L.: Protecting qutrit quantum coherence. Int. J. Theor. Phys. 56, 2540 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang, Z.: Protecting quantum Fisher information in curved space–time. Eur. Phys. J. Plus 133, 101 (2018)CrossRefGoogle Scholar
  19. 19.
    Vitali, D., Tombesi, P.: Using parity kicks for decoherence control. Phys. Rev. A 59, 4178 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Flores, M.M., Galapon, E.A.: Two qubit entanglement preservation through the addition of qubits. Ann. Phys. 354, 21–30 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Guo, Y.N., Tian, Q.L., Mo, Y.F., Zhang, G.L., Zeng, K.: Preservation of quantum Fisher information and geometric phase of a single qubit system in a dissipative reservoir through the addition of qubits. Int. J. Theor. Phys. 57, 1013–1023 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Levitt, M.: Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley, Chichester (2001)Google Scholar
  25. 25.
    Morigi, G., Solano, E., Englert, B.-G., Walther, H.: Measuring irreversible dynamics of a quantum harmonic oscillator. Phys. Rev. A 65, 040102 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Meunier, T., Gleyzes, S., Maioli, P., Auffeves, A., Nogues, G., Brune, M., Raimond, J.M., Haroche, S.: Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. Phys. Rev. Lett. 94, 010401 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  29. 29.
    Plenio, M.B., Huelga, S.F., Beige, A., Knight, P.L.: Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Tessier, T.E., Deutsch, I.H., Delgado, A., Fuentes-Guridi, I.: Entanglement sharing in the two-atom Tavis–Cummings model. Phys. Rev. A 68, 062316 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Kastoryano, M.J., Reiter, F., Sorensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Busch, J., De, S., Ivanov, S.S., Torosov, B.T., Spiller, T.P., Beige, A.: Cooling atom–cavity systems into entangled states. Phys. Rev. A 84, 022316 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Fasihi, M.A.: Anti-symmetry consideration on the preservation of entanglement of spin system. Ann. Phys. 364, 274–282 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations