Object reconstruction from multiplexed quantum ghost images using reduction technique

  • D. A. BalakinEmail author
  • A. V. Belinsky
  • A. S. Chirkin


We apply the measurement reduction technique to optimally reconstruct an object image from multiplexed ghost images (GI) while taking into account both GI correlations and object image sparsity. The measurement reduction technique is employed because it provides a unified framework for optimal processing of multiplexed and non-multiplexed images with different information about the measurement model, the research object and the research objective. We show that one can reconstruct an image in that way even if the object is illuminated by a small photon number. We consider frequency GI multiplexing using coupled parametric processes. We revealed that the imaging condition depends on the type of parametric process, namely, whether down- or up-conversion is used. Influence of information about sparsity in discrete cosine transform and Haar transform bases on reconstruction quality is studied. In addition, we compared ordinary images and GI when the detectors are additionally illuminated by noise photons in a computer experiment, which showed increased noise immunity of GI, especially with processing via the proposed technique.


Measurement reduction Ghost images Multiplexed ghost images Entangled photons Compressive sensing 



The authors are grateful for help to T. Yu. Lisovskaya.


  1. 1.
    Belinskii, A.V., Klyshko, D.N.: Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. J. Exp. Theor. Phys. 78(3), 259–262 (1994)ADSGoogle Scholar
  2. 2.
    Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A.: Correlated imaging, quantum and classical. Phys. Rev. A 70(1), 013802 (2004). ADSCrossRefGoogle Scholar
  3. 3.
    Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A.: Ghost imaging. In: Kolobov, M.I. (ed.) Quantum Imaging, pp. 79–111. Springer, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Chan, K.W.C., O’Sullivan, M.N., Boyd, R.W.: High-order thermal ghost imaging. Opt. Lett. 34(21), 3343–3345 (2009). ADSCrossRefGoogle Scholar
  5. 5.
    Erkman, B.I., Shapiro, J.H.: Ghost imaging: from quantum to classical to computational. Adv. Opt. Photonics 2(4), 405–450 (2010). ADSCrossRefGoogle Scholar
  6. 6.
    Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quantum Inf. Process. 11(4), 949–993 (2012). zbMATHCrossRefGoogle Scholar
  7. 7.
    Chirkin, A.S.: Multiplication of a ghost image by means of multimode entangled quantum states. JETP Lett. 102(6), 404–407 (2015). ADSCrossRefGoogle Scholar
  8. 8.
    Balakin, D.A., Belinsky, A.V., Chirkin, A.S., Yakovlev, V.S.: Multiplicated ghost images reconstruction. In: ICONO/LAT 2016 Technical Digest, ICONO-03 Quantum and Atom Optics (2016)Google Scholar
  9. 9.
    Balakin, D.A., Belinsky, A.V., Chirkin, A.S.: Correlations of multiplexed quantum ghost images and improvement of the quality of restored image. J. Russ. Laser Res. 38(2), 164–172 (2017). CrossRefGoogle Scholar
  10. 10.
    Balakin, D.A., Belinsky, A.V., Chirkin, A.S.: Improvement of the optical image reconstruction based on multiplexed quantum ghost images. J. Exp. Theor. Phys. 125(2), 210–222 (2017). ADSCrossRefGoogle Scholar
  11. 11.
    Rodionov, A.V., Chirkin, A.S.: Entangled photon states in consecutive nonlinear optical interactions. JETP Lett. 79(6), 253–256 (2004). ADSCrossRefGoogle Scholar
  12. 12.
    Ferraro, A., Paris, M.G.A., Bondani, M., Allevi, A., Puddu, E., Andreoni, A.: Three-mode entanglement by interlinked nonlinear interactions in optical \(\chi ^{(2)}\) media. JOSA B 21(6), 1241–1249 (2004). ADSGoogle Scholar
  13. 13.
    Olsen, M.K., Drummond, P.D.: Entanglement and the Einstein–Podolsky–Rosen paradox with coupled intracavity optical down-converters. Phys. Rev. A 71(5), 053803 (2005). ADSCrossRefGoogle Scholar
  14. 14.
    Solntsev, A.S., Sukhorukov, A.A., Neshev, D.N., Kivshar, Y.S.: Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides. Phys. Rev. Lett. 108(2), 023601 (2012). ADSCrossRefGoogle Scholar
  15. 15.
    Kruse, R., Katzschmann, F., Christ, A., Schreiber, A., Wilhelm, S., Laiho, K., Gábris, A., Hamilton, C.S., Jex, I., Silberhorn, C.: Spatio-spectral characteristics of parametric down-conversion in waveguide arrays. New J. Phys. 15(8), 083046 (2013). ADSCrossRefGoogle Scholar
  16. 16.
    Daems, D., Bernard, F., Cerf, N.J., Kolobov, M.I.: Tripartite entanglement in parametric down-conversion with spatially structured pump. JOSA B 27(3), 447–451 (2010). ADSCrossRefGoogle Scholar
  17. 17.
    Chirkin, A.S., Shutov, I.V.: On the possibility of the nondegenerate parametric amplification of optical waves at low-frequency pumping. JETP Lett. 86(11), 693–697 (2008). ADSCrossRefGoogle Scholar
  18. 18.
    Chirkin, A.S., Shutov, I.V.: Parametric amplification of light waves at low-frequency pumping in aperiodic nonlinear photonic crystals. J. Exp. Theor. Phys. 109(4), 547–556 (2009). ADSCrossRefGoogle Scholar
  19. 19.
    Saygin, M.Y., Chirkin, A.S.: Simultaneous parametric generation and up-conversion of entangled optical images. J. Exp. Theor. Phys. 111(1), 11–21 (2010). ADSCrossRefGoogle Scholar
  20. 20.
    Saygin, M.Y., Chirkin, A.S.: Quantum properties of optical images in coupled nondegenerate parametric processes. Opt. Spectrosc. 110(1), 97–104 (2011). ADSCrossRefGoogle Scholar
  21. 21.
    Saygin, M.Y., Chirkin, A.S., Kolobov, M.I.: Quantum holographic teleportation of entangled two-color optical images. JOSA B 29(8), 2090–2098 (2012). ADSCrossRefGoogle Scholar
  22. 22.
    Tlyachev, T.V., Chebotarev, A.M., Chirkin, A.S.: A new approach to quantum theory of multimode coupled parametric processes. Phys. Scr. T153, 014060 (2013). ADSCrossRefGoogle Scholar
  23. 23.
    Duan, D., Du, S., Xia, Y.: Multiwavelength ghost imaging. Phys. Rev. A 88(5), 053842 (2013). ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, D.J., Li, H.G., Zhao, Q.L., Wang, S., Wang, H.B., Xiong, J., Wang, K.: Wavelength-multiplexing ghost imaging. Phys. Rev. A 92(1), 013823 (2015). ADSCrossRefGoogle Scholar
  25. 25.
    Shi, D., Zhang, J., Huang, J., Wang, K., Yuan, K., Cao, K., Xie, C., Liu, D., Zhu, W.: Polarization-multiplexing ghost imaging. Opt. Lasers Eng. 102, 100–105 (2018). CrossRefGoogle Scholar
  26. 26.
    Chirkin, A.S., Gostev, P.P., Agapov, D.P., Magnitskiy, S.A.: Ghost polarimetry: ghost imaging of polarization-sensitive objects. Laser Phys. Lett. 15(11), 115404 (2018). ADSCrossRefGoogle Scholar
  27. 27.
    Morris, P.A., Aspden, R.S., Bell, J.E.C., Boyd, R.W., Padgett, M.J.: Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015). ADSCrossRefGoogle Scholar
  28. 28.
    Zerom, P., Chan, K.W.C., Howell, J.C., Boyd, R.W.: Entangled-photon compressive ghost imaging. Phys. Rev. A 84(6), 061804 (2011). ADSCrossRefGoogle Scholar
  29. 29.
    Gong, W., Han, S.: Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints. Phys. Lett. A 376(17), 1519–1522 (2012). ADSCrossRefGoogle Scholar
  30. 30.
    Gong, W., Han, S.: High-resolution far-field ghost imaging via sparsity constraint. Sci. Rep. 5(1), 9280 (2015). ADSCrossRefGoogle Scholar
  31. 31.
    Katz, O., Bromberg, Y., Silberberg, Y.: Compressive ghost imaging. Appl. Phys. Lett. 95(13), 131110 (2009). ADSCrossRefGoogle Scholar
  32. 32.
    Suchowski, H., Bruner, B.D., Israel, Y., Ganany-Padowicz, A., Arie, A., Silverberg, Y.: Broadband photon pair generation at \(3 \omega /2\). Appl. Phys. B 122(2), 25 (2016). ADSGoogle Scholar
  33. 33.
    Vyunishev, A.M., Arkhipkin, V.G., Chirkin, A.S.: Theory of second-harmonic generation in a chirped 2d nonlinear optical superlattice under nonlinear raman-nath diffraction. JOSA B 32(12), 2411–2416 (2015). ADSCrossRefGoogle Scholar
  34. 34.
    Akhmanov, S.A., D’yakov, Y.E., Chirkin, A.S.: Introduction to Statistical Radiophysics and Optics. Nauka, Moscow (1981). [in Russian]Google Scholar
  35. 35.
    Goodman, J.W.: Introduction to Fourier Optics, 3rd edn. Roberts & Company Publishers, Englewood (2004)Google Scholar
  36. 36.
    Shi, X., Huang, X., Nan, S., Li, H., Bai, Y., Fu, X.: Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method. Laser Phys. Lett. 15(4), 045204 (2018). ADSCrossRefGoogle Scholar
  37. 37.
    Pyt’ev, Y.P.: Methods of Mathematical Modeling of Measuring-Computing Systems, 3rd edn. Fizmatlit, Moscow (2012). [in Russian]Google Scholar
  38. 38.
    Pyt’ev, Y.P., Chulichkov, A.I.: Foundations for a theory of computer assisted superhigh resolution measurement systems. Meas. Tech. 41(2), 111–121 (1998). CrossRefGoogle Scholar
  39. 39.
    Pyt’ev, Y.P.: On the problem of superresolution of blurred images. Pattern Recognit. Image Anal. 14(1), 50–59 (2004)Google Scholar
  40. 40.
    Pyt’ev, Y.P.: Measurement-computation converter as a measurement facility. Autom. Remote Control 71(2), 303–319 (2010). MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Balakin, D.A., Pyt’ev, Y.P.: A comparative analysis of reduction quality for probabilistic and possibilistic measurement models. Moscow Univ. Phys. Bull. 72(2), 101–112 (2017). ADSCrossRefGoogle Scholar
  42. 42.
    Solomon, O., Mutzafi, M., Segev, M., Eldar, Y.C.: Sparsity-based super-resolution microscopy from correlation information. Opt. Express 26(14), 18238–18269 (2018). ADSCrossRefGoogle Scholar
  43. 43.
    Balakin, D.A., Pyt’ev, Y.P.: Improvement of measurement reduction in the case when the feature of interest to the researcher belongs to an a priori known convex closed set [in russian]. In: Lomonosov readings—2018. Proceedings of Physics section., pp. 155–158. M. V. Lomonosov Moscow State University. Faculty of Physics, Moscow (2018)Google Scholar
  44. 44.
    Peřina, J., Svozilík, J.: Randomly poled nonlinear crystals as a source of photon pairs. Phys. Rev. A 83(3), 033808 (2011). ADSCrossRefGoogle Scholar
  45. 45.
    Pelton, M., Marsden, P., Ljunggren, D., Tengner, M., Karlsson, A., Fragemann, A., Canalias, C., Laurell, F.: Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP. Opt. Express 12(15), 3573–3580 (2004). ADSCrossRefGoogle Scholar
  46. 46.
    Du, J., Gong, W., Han, S.: The influence of sparsity property of images on ghost imaging with thermal light. Opt. Lett. 37(6), 1067–1069 (2012). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.The International Laser CenterM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations