Advertisement

Quantum repeater without Bell measurements in double-quantum-dot systems

  • Xiao-Feng YiEmail author
  • Peng Xu
  • Qi Yao
  • Xianfu Quan
Article
  • 10 Downloads

Abstract

We propose a Bell measurement-free scheme to implement a quantum repeater in GaAs/AlGaAs double-quantum-dot systems. We prove that four pairs of double quantum dots compose an entanglement unit, given that the initial state is singlet states. Our scheme differs from the famous Duan–Lukin–Cirac–Zoller (DLCZ) protocol in that Bell measurements are unnecessary for the entanglement swapping, which provides great advantages and conveniences in experimental implementations. Our scheme significantly improves the success probability of quantum repeaters based on solid-state quantum devices.

Keywords

Entanglement swapping DLCZ protocol Double quantum dot Quantum repeater 

Notes

Acknowledgements

X. F. Yi thanks Wenxian Zhang, Mang Feng, Yong Zhang, Zhang-qi Yin, and Chao-Biao Zhou for valuable discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 11574239 and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics under Grant No. KF201614.

References

  1. 1.
    Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–8 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Jiang, L., Taylor, J.M., Lukin, M.D.: Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity qed. Phys. Rev. Lett. 83, 4204–4207 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Vinay, S.E., Kok, P.: Practical repeaters for ultralong-distance quantum communication. Phys. Rev. A 95, 052336 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K.: Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975)CrossRefGoogle Scholar
  12. 12.
    Wang, C., Wang, T.J., Zhang, Y.: Construction of a quantum repeater based on a quantum dot in an optical microcavity system. Laser Phys. Lett. 11(6), 065202 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, J., Gong, M., Guo, G.-C., He, L.: Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots. Phys. Rev. Lett. 115, 067401 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Mcmahon, P.L., De Greve, K.: Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation Using Self-Assembled Quantum Dots. Springer, Berlin (2015)Google Scholar
  15. 15.
    Ding, W., Shi, A., You, J.Q., Zhang, W.: High-fidelity quantum memory utilizing inhomogeneous nuclear polarization in a quantum dot. Phys. Rev. B 90, 235421 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Yin, Z., Li, F.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 85, 2392–2395 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Chen, C.Y., Yan, Y.U.: Scheme for quantum entanglement swapping on cavity qed system. Commun. Theor. Phys. 45(6), 1023–1025 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(390), 575 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Tavis, M., Cummings, F.W.: Exact solution for an \(n\)-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    Wu, Y., Yang, L.P., Zheng, Y., Deng, H., Yan, Z., Zhao, Y., Huang, K., Munro, W.J., Nemoto, K., Zheng, D.N.: An efficient and compact quantum switch for quantum circuits (2016). arXiv preprint arXiv:1605.06747
  24. 24.
    Chen, Y., Neill, C., Roushan, P., Leung, N., Fang, M., Barends, R., Kelly, J., Campbell, B., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Megrant, A., Mutus, J.Y., O’Malley, P.J.J., Quintana, C.M., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Geller, M.R., Cleland, A.N., Martinis, J.M.: Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Pechal, M., Besse, J.-C., Mondal, M., Oppliger, M., Gasparinetti, S., Wallraff, A.: Superconducting switch for fast on-chip routing of quantum microwave fields. Phys. Rev. Appl. 6, 024009 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Mi, X., Cady, J., Zajac, D., Petta, J.: Strong coupling of a single electron in silicon to a microwave photon. Science 355(6321), 156 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Samkharadze, N., Zheng, G., Kalhor, N., Brousse, D., Sammak, A., Mendes, U.C., Blais, A., Scappucci, G., Vandersypen, L.M.K.: Strong spin-photon coupling in silicon. Science 359(6380), 1123–1127 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Deng, G.-W., Wei, D., Li, S.-X., Johansson, J.R., Kong, W.-C., Li, H.-O., Cao, G., Xiao, M., Guo, G.-C., Nori, F., Jiang, H.-W., Guo, G.-P.: Coupling two distant double quantum dots with a microwave resonator. Nano Lett. 15(10), 6620–6625 (2015). PMID: 26327140ADSCrossRefGoogle Scholar
  29. 29.
    Deng, G.-W., Wei, D., Johansson, J.R., Zhang, M.-L., Li, S.-X., Li, H.-O., Cao, Gang, Xiao, M., Tu, T., Guo, G.-C., Jiang, H.-W., Nori, F., Guo, G.-P.: Charge number dependence of the dephasing rates of a graphene double quantum dot in a circuit qed architecture. Phys. Rev. Lett. 115, 126804 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Petta, J.R., Taylor, J.M., Johnson, A.C., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075–R4078 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Weinstein, Y.S., Chai, D., Xie, N.: Improving ancilla states for quantum computation. Quantum Inf. Process. 15(4), 1445–1453 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and TechnologyWuhan UniversityWuhanPeople’s Republic of China
  2. 2.State key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations