Abstract
This article studies iterative collective quantum games, where every player interacts with four partners and four mates. Four two-person game types are scrutinized by allowing the players to adopt the strategy of his best paid mate. Particular attention is paid in the study to the effect of variable degree of entanglement on Nash equilibrium strategy pairs in fair games where both players are able to update their strategies. The behaviour of unfair collective iterated games where only one of the players updates his strategies is also scrutinized.
Keywords
Collective Quantum GamesNotes
Acknowledgements
This work has been funded by the Spanish Grant MTM2015-63914-P. Part of the computations of this work were performed in FISWULF, an HPC machine of the International Campus of Excellence of Moncloa, funded by the UCM and Feder Funds.
References
- 1.Alonso-Sanz, R.: Collective quantum games with Werner-like states. Physica A 510, 812–827 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 2.Alonso-Sanz, R.: Spatial correlated games. R. Soc. Open Sci. 4(11), 171361 (2017)MathSciNetCrossRefGoogle Scholar
- 3.Alonso-Sanz, R.: On the effect of quantum noise in a quantum Prisoner’s Dilemma cellular automaton. Quantum Inf. Process. 16(6), 161 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 4.Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton with probabilistic updating. J. Cell. Autom. 11(2–3), 145–166 (2016)MathSciNetGoogle Scholar
- 5.Alonso-Sanz, R.: Variable entangling in a quantum battle of the sexes cellular automaton. In: ACRI-2014. LNCS, vol. 8751, pp. 125–135 (2014)Google Scholar
- 6.Alonso-Sanz, R., Shitu, H.: A quantum Samaritan’s Dilemma cellular automaton. R. Soc. Open Sci. 4(6), 160669 (2017)MathSciNetCrossRefGoogle Scholar
- 7.Alonso-Sanz, R., Situ, H.: On the effect of quantum noise in a quantum relativistic Prisoner’s Dilemma cellular automaton. Int. J. Theor. Phys. 55(12), 5265–5279 (2016)CrossRefGoogle Scholar
- 8.Benjamin, S.C., Hayden, P.M.: Comment on “Quantum Games and Quantum Strategies”. Phys. Rev. Lett. 87, 069801 (2001)ADSCrossRefGoogle Scholar
- 9.Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)ADSCrossRefGoogle Scholar
- 10.Binmore, K. : Just Playing: Game Theory and the Social Contract II. MIT Press, Cambridge. ISBN 0-262-02444-6 (1998)Google Scholar
- 11.Binmore, K.: Game Theory: A Very Short Introduction. Oxford UP, Oxford (2007)CrossRefGoogle Scholar
- 12.Buchanan, J.M.: The Samaritan’s Dilemma. In: Phelps, E.S., Sage, R. (eds.) Altruism, Morality, and Economic Theory, p. 71. Russell Sage Foundation, New York City (1975)Google Scholar
- 13.Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 89(1–2), 9–15 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 14.Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)MathSciNetCrossRefGoogle Scholar
- 15.Eisert, J., Wilkens, M., Lewenstein, M.: Comment on “Quantum games and quantum strategies”-reply. Phys. Rev. Lett. 87, 069802 (2001)ADSCrossRefGoogle Scholar
- 16.Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 17.Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)ADSMathSciNetCrossRefGoogle Scholar
- 18.Groisman, B.: When quantum games can be played classically: in support of vanEnk-Pike’s assertion. arXiv:1802.00260 (2018)
- 19.Iqbal, A., Chappell, J.M., Abbott, D.: On the equivalence between non-factorizable mixed-strategy classical games and quantum games. R. Soc. Open Sci. 3, 150477 (2016)MathSciNetCrossRefGoogle Scholar
- 20.Owen, G.: Game Theory. Academic Press, Cambridge (1995)zbMATHGoogle Scholar
- 21.Ozdemir, S.K., Shimamura, J., Morikoshi, F., Imoto, N.: Dynamics of a discoordination game with classical and quantum correlations. Phys. Lett. A 333, 218–231 (2004)ADSCrossRefGoogle Scholar
- 22.Rasmussen, E.: Games and Information, An Introduction to Game Theory. Blackwell, Oxford (2001)Google Scholar
- 23.Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, New York (2008)zbMATHGoogle Scholar
- 24.van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66(2), 024306 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 25.Vyas, N., Benjamin, C.: Negating van Enk-Pike’s assertion on quantum games OR Is the essence of a quantum game captured completely in the original classical game? arXiv:1701.08573 (2017)