Advertisement

Efficient quantum multi-proxy signature

  • Huawang Qin
  • Wallace K. S. Tang
  • Raylin Tso
Article
  • 19 Downloads

Abstract

An efficient quantum multi-proxy signature scheme is proposed, in which the original signatory Alice distributes her authority to several proxy signatories, and then each proxy signatory can sign the message for Alice alone. To sign multiple messages, Alice only needs to perform the initializing phase once, and the proxy signatories can use their particles repeatedly. Compared to the existing schemes, our scheme is more efficient in practice.

Keywords

Quantum signature Proxy signature Multi-proxy signature Quantum cryptography 

Notes

Acknowledgements

This study is supported by Natural Science Foundation of China (Grant No. 61602247) and Natural Science Foundation of Jiangsu Province (Grant No. BK20160840).

References

  1. 1.
    Buhrman, H., Cleve, R., Watrous, J., Wolf, R.D.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Rivest, R.L., Shamir, A., Aldleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Shang, T., Lei, Q., Liu, J.W.: Quantum random oracle model for quantum digital signature. Phys. Rev. A 94, 042314 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Lai, H., Luo, M.X., Pieprzyk, J., et al.: An efficient quantum blind digital signature scheme. Sci. China Inf. Sci. 60, 082501 (2017)CrossRefGoogle Scholar
  9. 9.
    Li, W., Shi, R.H., Guo, Y.: Blind quantum signature with blind quantum computation. Int. J. Theor. Phys. 56, 1108–1115 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ma, H.L., Li, F., Mao, N.Y., Wang, Y.J., Guo, Y.: Network-based arbitrated quantum signature scheme with graph state. Int. J. Theor. Phys. 56, 2551–2561 (2017)CrossRefGoogle Scholar
  11. 11.
    Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16, 19 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Guo, W., Xie, S.C., Zhang, J.Z.: A novel quantum proxy blind signature scheme. Int. J. Theor. Phys. 56, 1708–1718 (2017)CrossRefGoogle Scholar
  16. 16.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56, 1762–1770 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shi, J.J., Shi, R.H., Tang, Y., Lee, M.H.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10, 653–670 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yan, L.L., Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56, 634–642 (2017)CrossRefGoogle Scholar
  19. 19.
    Guo, W., Zhang, J.Z., Li, Y.P., An, W.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55, 3524–3536 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Cai, Q.Y., Li, W.B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of AutomatizationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Electronic EngineeringCity University of Hong KongKowloonHong Kong
  3. 3.Department of Computer ScienceNational Chengchi UniversityTaipeiTaiwan

Personalised recommendations