Advertisement

Entanglement generation between distant parties via disordered spin chains

  • Guilherme M. A. AlmeidaEmail author
  • Francisco A. B. F. de Moura
  • Marcelo L. Lyra
Article

Abstract

We study the emergence of bipartite entanglement between a pair of spins weakly connected to the ends of a linear disordered XY spin-1/2 channel. We analyze how their concurrence responds to structural and on-site fluctuations embodied by long-range spatially-correlated sequences. We show that the end-to-end entanglement is very robust against disorder and asymmetries in the channel provided that the degree of correlations are strong enough and both entangling parties are tuned accordingly. Our results offer further alternatives in the design of stable quantum communication protocols via imperfect spin channels.

Keywords

Quantum entanglement Anderson localization Quantum state transfer 

Notes

Acknowledgements

This work was partially supported by CNPq (Grant No. 152722/2016-5), CAPES, FINEP, and FAPEAL (Brazilian agencies).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Wojcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Wojcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska, M.: Multiuser quantum communication networks. Phys. Rev. A 75, 022330 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Y., Shi, T., Chen, B., Song, Z., Sun, C.-P.: Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 022301 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Huo, M.X., Li, Y., Song, Z., Sun, C.-P.: The peierls distorted chain as a quantum data bus for quantum state transfer. Europhys. Lett. 84, 30004 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Apollaro, T.J.G., Banchi, L., Cuccoli, A., Vaia, R., Verrucchi, P.: 99\(\%\)-Fidelity ballistic quantum-state transfer through long uniform channels. Phys. Rev. A 85, 052319 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Salimi, S., Ghoraishipour, S., Sorouri, A.: Perfect state transfer via quantum probability theory. Quantum Inf. Process. 12, 505 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lorenzo, S., Apollaro, T.J.G., Paganelli, S., Palma, G.M., Plastina, F.: Transfer of arbitrary two-qubit states via a spin chain. Phys. Rev. A 91, 042321 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Sandberg, M., Knill, E., Kapit, E., Vissers, M.R., Pappas, D.P.: Efficient quantum state transfer in an engineered chain of quantum bits. Quantum Inf. Process. 15, 1213 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Almeida, G.M.A., Ciccarello, F., Apollaro, T.J.G., Souza, A.M.C.: Quantum-state transfer in staggered coupled-cavity arrays. Phys. Rev. A 93, 032310 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Kempton, M., Lippner, G., Yau, S.-T.: Pretty good quantum state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16, 210 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Almeida, G.M.A.: Interplay between speed and fidelity in quantum-state transfer protocols via effective Rabi dynamics. Phys. Rev. A 98, 012334 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Amico, L., Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Plastina, F., Apollaro, T.J.G.: Local control of entanglement in a spin chain. Phys. Rev. Lett. 99, 177210 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Campos Venuti, L., Degli Esposti Boschi, C., Roncaglia, M.: Long-distance entanglement in spin systems. Phys. Rev. Lett. 96, 247206 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Gualdi, G., Giampaolo, S.M., Illuminati, F.: Modular entanglement. Phys. Rev. Lett. 106, 050501 (2011)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Estarellas, M.P., D’Amico, I., Spiller, T.P.: Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A 95, 042335 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Almeida, G.M.A., de Moura, F.A.B.F., Apollaro, T.J.G., Lyra, M.L.: Disorder-assisted distribution of entanglement in \(XY\) spin chains. Phys. Rev. A 96, 032315 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Bellec, M., Nikolopoulos, G.M., Tzortzakis, S.: Faithful communication hamiltonian in photonic lattices. Opt. Lett. 37, 4504 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Perez-Leija, A., Keil, R., Kay, A., Moya-Cessa, H., Nolte, S., Kwek, L.-C., Rodríguez-Lara, B.M., Szameit, A., Christodoulides, D.N.: Coherent quantum transport in photonic lattices. Phys. Rev. A 87, 012309 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    De Chiara, G., Rossini, D., Montangero, S., Fazio, R.: From perfect to fractal transmission in spin chains. Phys. Rev. A 72, 012323 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Burgarth, D., Bose, S.: Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7, 135 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Tsomokos, D.I., Hartmann, M.J., Huelga, S.F., Plenio, M.B.: Entanglement dynamics in chains of qubits with noise and disorder. New J. Phys. 9, 79 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Petrosyan, D., Nikolopoulos, G.M., Lambropoulos, P.: State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Yao, N.Y., Jiang, L., Gorshkov, A.V., Gong, Z.-X., Zhai, A., Duan, L.-M., Lukin, M.D.: Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Robustness of spin-coupling distributions for perfect quantum state transfer. Phys. Rev. A 84, 022311 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Spin chains for robust state transfer: modified boundary couplings versus completely engineered chains. Phys. Rev. A 85, 012318 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Ashhab, S.: Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A 92, 062305 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Phillips, P., Wu, H.-L.: Localization and its absence: a new metallic state for conducting polymers. Science 252, 1805 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    de Moura, F.A.B.F., Lyra, M.L.: Delocalization in the 1d anderson model with long-range correlated disorder. Phys. Rev. Lett. 81, 3735 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Domínguez-Adame, F., Malyshev, V.A., de Moura, F.A.B.F., Lyra, M.L.: Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder. Phys. Rev. Lett. 91, 197402 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Lima, R.P.A., Lyra, M.L., Nascimento, E.M., de Jesus, A.D.: Magnon delocalization in ferromagnetic chains with long-range correlated disorder. Phys. Rev. B 65, 104416 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    de Moura, F.A.B.F., Coutinho-Filho, M.D., Raposo, E.P., Lyra, M.L.: Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange. Phys. Rev. B 66, 014418 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Montangero, S., Benenti, G., Fazio, R.: Dynamics of entanglement in quantum computers with imperfections. Phys. Rev. Lett. 91, 187901 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Refael, G., Moore, J.E.: Criticality and entanglement in random quantum systems. J. Phys. A Math. Theor. 42, 504010 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Binosi, D., De Chiara, G., Montangero, S., Recati, A.: Increasing entanglement through engineered disorder in the random ising chain. Phys. Rev. B 76, 140405 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Rodriguez-Laguna, J., Santalla, S.N., Ramirez, G., Sierra, G.: Entanglement in correlated random spin chains, rna folding and kinetic roughening. New J. Phys. 18, 073025 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Getelina, J.C., Alcaraz, F.C., Hoyos, J.A.: Entanglement properties of correlated random spin chains and similarities with conformally invariant systems. Phys. Rev. B 93, 045136 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Giampaolo, S.M., Illuminati, F.: Long-distance entanglement in many-body atomic and optical systems. New J. Phys. 12, 025019 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Sahling, S., Remenyi, G., Monceau, P., Saligrama, V., Marin, C., Revcolevschi, A., Regnault, L.P., Raymond, S., Lorenzo, J.E.: Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains. Nat. Phys. 11, 255 (2015)CrossRefGoogle Scholar
  44. 44.
    Santos, L.F., Rigolin, G.: Effects of the interplay between interaction and disorder in bipartite entanglement. Phys. Rev. A 71, 032321 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Paczuski, M., Maslov, S., Bak, P.: Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E 53, 414 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    Feder, J.: Fractals. Plenum Press, New York (1988)CrossRefGoogle Scholar
  47. 47.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  49. 49.
    Inui, M., Trugman, S.A., Abrahams, E.: Unusual properties of midband states in systems with off-diagonal disorder. Phys. Rev. B 49, 3190 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    Cheraghchi, H., Fazeli, S.M., Esfarjani, K.: Localization-delocalization transition in a one one-dimensional system with long-range correlated off-diagonal disorder. Phys. Rev. B 72, 174207 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Assuncao, T.F., Lyra, M.L., de Moura, F.A.B.F., Domínguez-Adame, F.: Coherent electronic dynamics and absorption spectra in an one-dimensional model with long-range correlated off-diagonal disorder. Phys. Lett. A 375, 1048 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Cai, J.-M., Zhou, J.-M., Guo, G.-C.: Decoherence effects on the quantum spin channels. Phys. Rev. A 74, 022328 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Long quantum channels for high-quality entanglement transfer. New J. Phys. 13, 123006 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Zwick, A., Álvarez, G.A., Bensky, G., Kurizki, G.: Optimized dynamical control of state transfer through noisy spin chains. New J. Phys. 16, 065021 (2014)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations