Quantum communication protocols as a benchmark for programmable quantum computers

  • A. A. Zhukov
  • E. O. Kiktenko
  • A. A. Elistratov
  • W. V. PogosovEmail author
  • Yu. E. Lozovik


We point out that realization of quantum communication protocols in programmable quantum computers provides a deep benchmark for capabilities of real quantum hardware. Particularly, it is prospective to focus on measurements of entropy-based characteristics of the performance and to explore whether a “quantum regime” is preserved. We perform proof-of-principle implementations of superdense coding and quantum key distribution BB84 using 5- and 16-qubit superconducting quantum processors of IBM Quantum Experience. We focus on the ability of these quantum machines to provide an efficient transfer of information between distant parts of the processors by placing Alice and Bob at different qubits of the devices. We also examine the ability of quantum devices to serve as quantum memory and to store entangled states used in quantum communication. Another issue we address is an error mitigation. Although it is at odds with benchmarking, this problem is nevertheless of importance in a general context of quantum computation with noisy quantum devices. We perform such a mitigation and noticeably improve some results.


Quantum computer Quantum communication protocol Quantum algorithms Superdense coding Quantum benchmark 



We acknowledge use of the IBM Quantum Experience for this work. The viewpoints expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum Experience team. E. O. K. was supported by RFBR (Project No. 18-37-00096). W. V. P. acknowledges a support from RFBR (Project No. 15-02-02128). Yu. E. L. acknowledges a support from RFBR (Project No. 17-02-01134) and the Program of Basic Research of HSE.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175Google Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Korzh, B., Wen Lim, C.C., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Fröhlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W.-S., Plews, A., Sharpe, A.W., Yuan, Z., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163 (2017)CrossRefGoogle Scholar
  6. 6.
    Liao, S.-K., et al.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509 (2017)CrossRefGoogle Scholar
  7. 7.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum. Netw. Proc. SPIE 5815, 138 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Kiktenko, E.O., Pozhar, N.O., Duplinskiy, A.V., Kanapin, A.A., Sokolov, A.S., Vorobey, S.S., Miller, A.V., Ustimchik, V.E., Anufriev, M.N., Trushechkin, A.T., Yunusov, R.R., Kurochkin, V.L., Kurochkin, YuV, Fedorov, A.K.: Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron. 47, 798 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Tysowski, P.K., Ling, X., Lütkenhaus, N., Mosca, M.: The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD). Quantum Sci. Technol. 3, 024001 (2018)ADSGoogle Scholar
  11. 11.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Jian-Yong, Hu, Bo, Yu., Jing, Ming-Yong, Xiao, Lian-Tuan, Jia, Suo-Tang, Qin, Guo-Qing, Long, Gui-Lu: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, Wei, Ding, Dong-Sheng, Sheng, Yu-Bo, Zhou, Lan, Shi, Bao-Sen, Guo, Guang-Can: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ren, Ji-Gang, et al.: Ground-to-satellite quantum teleportation. Nature 549, 70 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Schoelkopf, R.J., Girvin, S.M.: Wiring up quantum systems. Nature 451(7179), 664 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277 (2012)CrossRefGoogle Scholar
  19. 19.
    Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Ristè, D., Poletto, S., Huang, M.Z., Bruno, A., Vesterinen, V., Saira, O.P., DiCarlo, L.: Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6(1), 6983 (2015)CrossRefGoogle Scholar
  21. 21.
    Córcoles, A., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6(1), 6979 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a superconducting quantum computing system. npj Quantum Inf. 3(1), 2 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17(6), 153 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Barends, R., Lamata, L., Kelly, J., García-Álvarez, L., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Solano, E., Martinis, J.M.: Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6(1), 7654 (2015)CrossRefGoogle Scholar
  26. 26.
    Langford, N.K., Sagastizabal, R., Kounalakis, M., Dickel, C., Bruno, A., Luthi, F., Thoen, D.J., Endo, A., DiCarlo, L.: Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling. Nat. Commun. 8, 1715 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Heras, U.L., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534(7606), 222 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Roushan, P., Neill, C., Tangpanitanon, J., Bastidas, V.M., Megrant, A., Barends, R., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A., Foxen, B., Giustina, M., Jeffrey, E., Kelly, J., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T., Neven, H., Angelakis, D.G., Martinis, J.: Spectral signatures of many-body localization with interacting photons. arXiv:1709.07108 (2017)
  29. 29.
    Ristè, D., da Silva, M.P., Ryan, C.A., Cross, A.W., Córcoles, A.D., Smolin, J.A., Gambetta, J.M., Chow, J.M., Johnson, B.R.: Demonstration of quantum advantage in machine learning. npj Quantum Inf. 3(1), 16 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Reagor, M., Osborn, C.B., Tezak, N., Staley, A., Prawiroatmodjo, G., Scheer, M., Alidoust, N., Sete, E.A., Didier, N., da Silva, M.P., Acala, E., Angeles, J., Bestwick, A., Block, M., Bloom, B., Bradley, A., Bui, C., Caldwell, S., Capelluto, L., Chilcott, R., Cordova, J., Crossman, G., Curtis, M., Deshpande, S., El Bouayadi, T., Girshovich, D., Hong, S., Hudson, A., Karalekas, P., Kuang, K., Lenihan, M., Manenti, R., Manning, T., Marshall, J., Mohan, Y., O’Brien, W., Otterbach, J., Papageorge, A., Paquette, J.P., Pelstring, M., Polloreno, A., Rawat, V., Ryan, C.A., Renzas, R., Rubin, N., Russel, D., Rust, M., Scarabelli, D., Selvanayagam, M., Sinclair, R., Smith, R., Suska, M., To, T.W., Vahidpour, M., Vodrahalli, N., Whyland, T., Yadav, K., Zeng, W., Rigetti, C.T.: Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 4(2) (2018)Google Scholar
  31. 31.
    Temme, Kristan, Bravyi, Sergey, Gambetta, Jay M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, Ying, Benjamin, Simon C.: Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017)Google Scholar
  33. 33.
    McClean, Jarrod R., Kimchi-Schwartz, Mollie E., Carter, Jonathan, de Jong, Wibe A.: Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95, 042308 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Endo, S., Benjamin, S.C., Li, Y.: Practical Quantum Error Mitigation for Near-Future Applications. arXiv:1712.09271
  35. 35.
    Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, YuE: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process. 17, 223 (2018)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Moll, Nikolaj, Barkoutsos, Panagiotis, Bishop, Lev S., Chow, Jerry M., Cross, Andrew, Egger, Daniel J., Filipp, Stefan, Fuhrer, Andreas, Gambetta, Jay M., Ganzhorn, Marc, Kandala, Abhinav, Mezzacapo, Antonio, Müller, Peter, Riess, Walter, Salis, Gian, Smolin, John, Tavernelli, Ivano, Temme, Kristan: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3, 030503 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Michielsen, K., Nocon, M., Willsch, D., Jin, F., Lippert, T., De Raedt, H.: Benchmarking gate-based quantum computers. Comput. Phys. Commun. 220, 44 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Bai, G., Chiribella, G.: Test one to test many: a unified approach to quantum benchmarks. Phys. Rev. Lett. 120, 150502 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    Wootton, J.R.: Benchmarking of quantum processors with random circuits. arXiv:1806.02736
  41. 41.
    García-Martín, D., Sierra, G.: Five Experimental Tests on the 5-Qubit IBM Quantum Computer. arXiv:1712.05642
  42. 42.
    Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papenbrock, T., Pooser, R.C., Dean, D.J., Lougovski, P.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    Pokharel, B., Anand, N., Fortman, B., Lidar, D.: Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. arXiv:1807.08768
  44. 44.
    Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Phys. Rev. Appl. 8, 044017 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Magesan, E., Gambetta, J.M., Emerson, J.: Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Proctor, T., Rudinger, K., Young, K., Sarovar, M., Blume-Kohout, R.: What randomized benchmarking actually measures. Phys. Rev. Lett. 119, 130502 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dukhov Research Institute of Automatics (VNIIA)MoscowRussia
  2. 2.National Research Nuclear University (MEPhI)MoscowRussia
  3. 3.Russian Quantum CenterMoscowRussia
  4. 4.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  5. 5.Geoelectromagnetic Research Center of Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  6. 6.Institute for Theoretical and Applied Electrodynamics, Russian Academy of SciencesMoscowRussia
  7. 7.Moscow Institute of Physics and TechnologyMoscow RegionRussia
  8. 8.Institute of Spectroscopy, Russian Academy of SciencesMoscowRussia
  9. 9.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations