Advertisement

Two quantum protocols for secure hamming distance computation

  • Zhen-wan Peng
  • Run-hua Shi
  • Pan-hong Wang
  • Shun Zhang
Article
  • 24 Downloads

Abstract

Secure hamming distance computation occupies a vital position in secure multiparty computation, which allows two parties to jointly compute the hamming distance without disclosing their respective private information. There are a lot of significant applications of secure hamming distance computation in private similarity determination fields, such as in biometric identification and e-commerce. In this paper, we present two quantum protocols for secure hamming distance computation. Protocol I subtly makes use of quantum CNOT operator and quantum Shift operator, which are simple quantum operators, while Protocol II utilizes the features of measurement-device-independent quantum key distribution, which can solve the security loopholes in practical realizations due to the imperfection in the detectors. Both two protocols can ensure the fairness of two parties and a higher security than the classical related protocols.

Keywords

Secure multiparty computation Hamming distance Quantum unitary operator MDI-QKD Privacy 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61772001).

References

  1. 1.
    Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS’08, pp. 160–164. IEEE (1982)Google Scholar
  2. 2.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  3. 3.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)Google Scholar
  4. 4.
    Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, pp. 13–22. ACM (2001)Google Scholar
  5. 5.
    Bringer, J., Chabanne, H., Patey, A.: Shade: secure hamming distance computation from oblivious transfer. In: International Conference on Financial Cryptography and Data Security, pp. 164–176. Springer, Berlin, Heidelberg (2013)Google Scholar
  6. 6.
    Bringer, J., Chabanne, H., Favre, M. et al.: GSHADE: faster privacy-preserving distance computation and biometric identification. In: Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security, pp. 187–198. ACM (2014)Google Scholar
  7. 7.
    Kiraz, M.S., Genç, Z.A., Kardas, S.: Security and efficiency analysis of the Hamming distance computation protocol based on oblivious transfer. Secur. Commun. Netw. 8(18), 4123–4135 (2015)CrossRefGoogle Scholar
  8. 8.
    Yasuda, M.: Secure Hamming distance computation for biometrics using ideal-lattice and ring-LWE homomorphic encryption. Inf. Secur. J. A Glob. Perspect. 26(2), 85–103 (2017)CrossRefGoogle Scholar
  9. 9.
    Jarrous, A., Pinkas, B.: Secure Hamming distance based computation and its applications. In: ACNS, vol. 9, pp. 107–124 (2009)Google Scholar
  10. 10.
    Osadchy, M., Pinkas, B., Jarrous, A. et al.: Scifi-a system for secure face identification. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP), pp. 239–254. IEEE (2010)Google Scholar
  11. 11.
    Huang, Y., Evans, D., Katz, J. et al.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium, vol. 201(1). (2011)Google Scholar
  12. 12.
    Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint identification. In: European Symposium on Research in Computer Security, pp. 190–209. Springer, Berlin, Heidelberg (2011)Google Scholar
  13. 13.
    Kulkarni, R., Namboodiri, A.: Secure hamming distance based biometric authentication. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013)Google Scholar
  14. 14.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)Google Scholar
  15. 15.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)Google Scholar
  16. 16.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A 76(6), 062308 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum protocols for classical two-party computation. Phys. Rev. Lett. 109(16), 160501 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  20. 20.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, pp. 175–179. IEEE (1984)Google Scholar
  22. 22.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, X.B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92(7), 077902 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyAnhui UniversityHefeiChina

Personalised recommendations