Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities

  • De-Xiu Qiu
  • Ruiping Bai
  • Cong Zhang
  • Li-Fang Xin
  • Xin-Yu Zou
  • Ying Qiao Zhang
  • Xing Ri JinEmail author
  • Chengshou An
  • Shou Zhang


Unidirectional reflectionlessness is investigated in a non-Hermitian quantum system that consists of two plasmonic cavities (PCs) coupled to a plasmonic waveguide. By appropriately adjusting the phase shift and decay rate of two PCs, unidirectional reflectionlessness is obtained at exceptional points. And the bilateral unidirectional reflectionless propagation can be manipulated in a wide range of decay rate. Moreover, high non-reciprocal entanglement between two PCs is obtained under the appropriate phase shift and decay rate of two PCs.


Surface plasmon Unidirectional reflectionlessness Quantum entanglement 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 11364044, 11864043), the Education Department of Jilin Province Science and Technology Research Project (Grant No. JJKH20170455KJ) and the Science and Technology Development Foundation of Jilin Province (Grant No. 20180101342JC).


  1. 1.
    Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Chen, W., Chen, G.Y., Chen, Y.N.: Controlling Fano resonance of nanowire surface plasmons. Opt. Lett. 36, 3602–3604 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Chen, G.Y., Chen, Y.N.: Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023–4025 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, L., Gong, Z.R., Liu, Y., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Yan, W.B., Fan, H.: Control of single-photon transport in a one-dimensional waveguide by a single photon. Phys. Rev. A 90, 053807 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Zhou, L., Yang, S., Liu, Y., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Zhou, L., Dong, H., Liu, Y., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18, 10360–10368 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Fratini, F., Ghobadi, R.: Full quantum treatment of a light diode. Phys. Rev. A 93, 023818 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)CrossRefGoogle Scholar
  15. 15.
    Quijandría, F., Naether, U., Özdemir, S.K., Nori, F., Zueco, D.: PT-symmetric circuit QED. Phys. Rev. A 97, 053846 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Kuo, P.C., Chen, G.Y., Chen, Y.N.: Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Kim, N.C., Ko, M.C., Choe, C.I.: Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide. Plasmonics 10, 1447–1452 (2015)CrossRefGoogle Scholar
  18. 18.
    Kim, N.C., Li, J.B., Yang, Z.J., Hao, Z.H., Wang, Q.Q.: Switching of a single propagating plasmon by two quantum dots system. Appl. Phys. Lett. 97, 061110 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Kim, N.C., Ko, M.C., Wang, Q.Q.: Single plasmon switching with n quantum dots system coupled to one-dimensional waveguide. Plasmonics 10, 611–615 (2014)CrossRefGoogle Scholar
  20. 20.
    Kim, N.C., Ko, M.C., Choe, S.I., Jang, C.J., Kim, G.J., Hao, Z.H., Li, J.B., Wang, Q.Q.: Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon. Plasmonics 13, 1089–1095 (2017)CrossRefGoogle Scholar
  21. 21.
    Kim, N.C., Ko, M.C., Choe, S.I., Hao, Z.H., Zhou, L., Li, J.B., Im, S.J., Ko, Y.H., Jo, C.G., Wang, Q.Q.: Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Chen, G.Y., Lambert, N., Chou, C.H., Chen, Y.N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Cheng, M.T., Song, Y.Y.: Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Wu, N., Zhang, C., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Unidirectional reflectionless phenomena in non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide. Opt. Express 26, 3839–3849 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Chen, G.Y., Li, C.M., Chen, Y.N.: Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337–1339 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79, 023838 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Cheng, M.T., Luo, Y.Q., Song, Y.Y., Zhao, G.X.: Single-photon scattering by a \(\Lambda \)-type three-level in a cavity coupling to one-dimensional waveguide. Opt. Commun. 283, 3721–3726 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Kim, N.C., Ko, M.C.: Switching of a single photon by two \(\Lambda \)-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics 10, 605–610 (2015)CrossRefGoogle Scholar
  30. 30.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Gao, T., Estrecho, E., Bliokh, K.Y., Liew, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A.: Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 15522 (2015)CrossRefGoogle Scholar
  33. 33.
    Leykam, D., Bliokh, K.Y., Huang, C., Chong, Y.D., Nori, F.: Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Choi, Y., Kang, S., Lim, S., Kim, W., Kim, J.R., Lee, J.H., An, K.: Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Wiersig, J.: Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Shin, Y., Kwak, H., Moon, S., Lee, S.B., Yang, J., An, K.: Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells. Sci. Rep. 6, 38826 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Xu, J., Du, Y.X., Huang, W., Zhang, D.W.: Detecting topological exceptional points in a parity-time symmetric system with cold atoms. Opt. Express 25, 15786–15795 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Jing, H., Özdemir, S.K., Geng, Z., Zhang, J., Lü, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)CrossRefGoogle Scholar
  39. 39.
    Jing, H., Özdemir, S.K., Lü, H., Nori, F.: High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Jing, H., Özdemir, S.K., Lü, X.Y., Zhang, J., Yang, L., Nori, F.: PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Lü, H., Özdemir, S.K., Kuang, L.M., Nori, F., Jing, H.: Exceptional points in random-defect phonon lasers. Phys. Rev. Appl. 8, 044020 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Zhang, J., Peng, B., Özdemir, S.K., Pichler, K., Krimer, D.O., Zhao, G., Nori, F., Liu, Y.X., Rotter, S., Yang, L.: A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    Peng, B., Özdemir, Ṣ.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)CrossRefGoogle Scholar
  44. 44.
    Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Sun, Y., Tan, W., Li, H.Q., Li, J., Chen, H.: Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Peng, B., Özdemir, S.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Huang, Y., Veronis, G., Min, C.: Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt. Express 23, 29882–29895 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    Gu, X., Bai, R., Zhang, C., Jin, X.R., Zhang, Y.Q., Zhang, S., Lee, Y.P.: Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling. Opt. Express 25, 11778–11787 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    Bai, R., Zhang, C., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling. Sci. Rep. 7, 10742 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    Zhang, C., Bai, R., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Opt. Express. 25, 24281–24289 (2017)CrossRefGoogle Scholar
  54. 54.
    Peng, B., Özdemir, S.K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C.M., Nori, F., Yang, L.: Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Bliokh, K.Y., Rodríguez-Fortuño, F.J., Bekshaev, A.Y., Kivshar, Y.S., Nori, F.: Electric-current-induced unidirectional propagation of surface plasmon-polaritons. Opt. Lett. 43, 963–966 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    Maayani, S., Dahan, R., Kligerman, Y., Moses, E., Hassan, A.U., Jing, H., Nori, F., Christodoulides, D.N., Carmon, T.: Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    Jin, X.R., Sun, L., Yang, X.D., Gao, J.: Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt. Lett. 38, 4078–4081 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Zheng, H., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    Fratini, F., Mascarenhas, E., Safari, L., Poizat, J-h, Valente, D., Auffèves, A., Gerace, D., Santos, M.F.: Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification. Phys. Rev. Lett. 113, 243601 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • De-Xiu Qiu
    • 1
  • Ruiping Bai
    • 1
  • Cong Zhang
    • 1
  • Li-Fang Xin
    • 1
  • Xin-Yu Zou
    • 1
  • Ying Qiao Zhang
    • 1
  • Xing Ri Jin
    • 1
    Email author
  • Chengshou An
    • 1
  • Shou Zhang
    • 1
  1. 1.Department of Physics, College of ScienceYanbian UniversityYanjiPeople’s Republic of China

Personalised recommendations