Advertisement

Monogamy properties of qubit systems

  • Xue-Na ZhuEmail author
  • Shao-Ming Fei
Article

Abstract

We investigate monogamy relations related to quantum entanglement for n-qubit quantum systems. General monogamy inequalities are presented to the \(\beta \hbox {th}\,(\beta \in (0,2))\) power of concurrence, negativity and the convex-roof extended negativity, as well as the \(\beta \hbox {th}\,(\beta \in (0,\sqrt{2}))\) power of entanglement of formation. These monogamy relations are complementary to the existing ones with different regions of parameter \(\beta \). In additions, new monogamy relations are also derived which include the existing ones as special cases.

Keywords

Monogamy relations Concurrence Negativity Entanglement of formation 

Notes

Acknowledgements

This work is supported by NSFC under numbers 11675113, 11605083, and Beijing Municipal Commission of Education (KM201810011009).

References

  1. 1.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91, 012339 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Rungta, P., Bužek, V.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Spec. Top. 159, 71 (2008)CrossRefGoogle Scholar
  22. 22.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Statistics ScienceLudong UniversityYantaiChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations