Advertisement

One-way deficit and quantum phase transitions in XY model and extended Ising model

  • Yao-Kun Wang
  • Yu-Ran ZhangEmail author
  • Heng Fan
Article

Abstract

Originating in questions regarding work extraction from quantum systems coupled to a heat bath, the quantum deficit, a kind of quantum correlations in addition to entanglement and quantum discord, links quantum thermodynamics with quantum information theory. In this paper, we investigate the one-way deficit of two adjacent spins in the bulk of the XY model and the extended Ising model. We find that the one-way deficit susceptibility is able to characterize quantum phase transitions in the XY model and even topological phase transitions in the extend Ising model. This study will enlighten extensive studies of quantum phase transitions from the perspective of quantum information processing and quantum computation, including finite-temperature phase transitions, topological phase transitions, and dynamical phase transitions in a variety of quantum many-body systems.

Keywords

One-way deficit Quantum phase transition Symmetry-protected topological order 

Notes

Acknowledgements

We would like to thank Yu Zeng, Jin-Jun Chen, and Wei Qin for useful discussions. This work was supported by Ministry of Science and Technology of China (Grants Nos. 2016YFA0302104 and 2016YFA0300600), National Natural Science Foundation of China (Grants Nos. 91536108, 11774406, and U1530401), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).

References

  1. 1.
    Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Orús, R., Wei, T.C.: Visualizing elusive phase transitions with geometric entanglement. Phys. Rev. B 82, 155120 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, X.Z., Guo, J.L.: Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quantum Inf. Process. 16, 223 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Cui, J., Cao, J.P., Fan, H.: Entanglement-assisted local operations and classical communications conversion in quantum critical systems. Phys. Rev. A 85, 022338 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. 3, 812 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Cui, J., Amico, L., Fan, H., Gu, M., Hamma, A., Vedral, V.: Local characterization of one-dimensional topologically ordered states. Phys. Rev. B 88, 125117 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Franchini, F., Cui, J., Amico, L., Fan, H., Gu, M., Korepin, V., Kwek, L.C., Vedral, V.: Local convertibility and the quantum simulation of edge states in many-body systems. Phys. Rev. X 4, 041028 (2014)Google Scholar
  21. 21.
    Liu, S.Y., Quan, Q., Chen, J.J., Zhang, Y.R., Yang, W.L., Fan, H.: Phase diagram of quantum critical system via local convertibility of ground state. Sci. Rep. 6, 29175 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Wen, X.G., Niu, Q.: Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377–9396 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Wen, X.G.: Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons. Oxford University Press on Demand, Oxford (2004)Google Scholar
  25. 25.
    Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 44, 131 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Levin, M., Wen, X.G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Li, H., Haldane, F.D.M.: Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, Y.R., Zeng, Y., Fan, H., You, J.Q., Nori, F.: Characterization of topological states via dual multipartite entanglement. Phys. Rev. Lett. 120, 250501 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang, G., Song, Z.: Topological characterization of extended quantum Ising models. Phys. Rev. Lett. 115, 177204 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, G., Li, C., Song, Z.: Majorana charges, winding numbers and Chern numbers in quantum Ising models. Sci. Rep. 7, 8176 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Mukherjee, V., Divakaran, U., Dutta, A., Sen, D.: Quenching dynamics of a quantum XY spin-\(\frac{1}{2}\) chain in a transverse field. Phys. Rev. B 76, 174303 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Garnerone, S., Jacobson, N.T., Haas, S., Zanardi, P.: Fidelity approach to the disordered quantum XY model. Phys. Rev. Lett. 102, 057205 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Franchini, F., Its, A.R., Korepin, V.E.: Renyi entropy of the XY spin chain. J. Phys. A: Math. Theor. 41, 025302 (2008)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Liu, S.Y., Zhang, Y.R., Yang, W.L., Fan, H.: Global quantum discord and quantum phase transition in XY model. Ann. Phys. 362, 805–813 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87, 012339 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79–90 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    Son, W., Amico, L., Plastina, F., Vedral, V.: Quantum instability and edge entanglement in the quasi-long-range order. Phys. Rev. A 79, 022302 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Wang, Y.K., Zhang, Y.R.: One-way deficit and quantum phase transitions in XX model. Int. J. Theor. Phys. 57, 363–370 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Niu, Y.Z., Chung, S.B., Hsu, C.H., Mandal, I., Raghu, S., Chakravarty, S.: Majorana zero modes in a quantum Ising chain with longer-ranged interactions. Phys. Rev. B 85, 035110 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Vodola, D., Lepori, L., Ercolessi, E., Gorshkov, A.V., Pupillo, G.: Kitaev chains with long-range pairing. Phys. Rev. Lett. 113, 156402 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Feng, X.Y., Zhang, G.M., Xiang, T.: Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett. 98, 087204 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Qin, Y.Q., He, Y.Y., You, Y.Z., Lu, Z.Y., Sen, A., Sandvik, A.W., Xu, C.K., Meng, Z.Y.: Duality between the deconfined quantum-critical point and the bosonic topological transition. Phys. Rev. X 7, 031052 (2017)Google Scholar
  45. 45.
    Ye, B.L., Fei, S.M.: A note on one-way quantum deficit and quantum discord. Quantum Inf. Process. 15, 279–289 (2016)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Chiu, C.K., Teo, J.C.Y., Schnyder, A.P., Ryu, S.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of MathematicsTonghua Normal UniversityTonghuaChina
  2. 2.Beijing Computational Science Research CenterBeijingChina
  3. 3.Theoretical Quantum Physics LaboratoryRIKEN Cluster for Pioneering ResearchWako-shiJapan
  4. 4.Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, CASBeijingChina
  5. 5.CAS Center for Excellence in Topological Quantum ComputationUCASBeijingChina

Personalised recommendations