Advertisement

Tightening the entropic uncertainty relations for multiple measurements and applying it to quantum coherence

  • H. Dolatkhah
  • S. Haseli
  • S. SalimiEmail author
  • A. S. Khorashad
Article
  • 113 Downloads

Abstract

The uncertainty principle sets limit on our ability to predict the values of two incompatible observables measured on a quantum particle simultaneously. This principle can be stated in various forms. In quantum information theory, it is expressed in terms of the entropic measures. Uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this work, a method is provided for converting the entropic uncertainty relation in the absence of quantum memory to that in its presence. It is shown that the lower bounds obtained through the method are tighter than those having been achieved so far. The method is also used to obtain the uncertainty relations for multiple measurements in the presence of quantum memory. Also for a given state, the lower bounds on the sum of the relative entropies of unilateral coherences are provided using the uncertainty relations in the presence of quantum memory, and it is shown which one is tighter.

Keywords

Entropic uncertainty relations Quantum coherence Quantum memory Multiple measurements 

References

  1. 1.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)ADSCrossRefGoogle Scholar
  2. 2.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)ADSCrossRefGoogle Scholar
  3. 3.
    Schrödinger, E.: About Heisenberg uncertainty relation. Proc. Pruss. Acad. Sci. XIX, 296 (1930)Google Scholar
  4. 4.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11, 045018 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)CrossRefGoogle Scholar
  9. 9.
    Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6, 011020 (2016)Google Scholar
  11. 11.
    Berta, M., Coles, P.J., Wehner, S.: Entanglement-assisted guessing of complementary measurement outcomes. Phys. Rev. A 90, 062127 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Walborn, S.P., Salles, A., Gomes, R.M., Toscano, F., Souto Ribeiro, P.H.: Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Pati, A.K., Wilde, M.M., Usha Devi, A.R., Rajagopal, A.K., Sudha, : Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Ballester, M.A., Wehner, S.: Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases. Phys. Rev. A 75, 022319 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    de Vicente, J.I., Sánchez-Ruiz, J.: Improved bounds on entropic uncertainty relations. Phys. Rev. A 77, 042110 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Wu, S., Yu, S., Molmer, K.: Entropic uncertainty relation for mutually unbiased bases. Phys. Rev. A 79, 022104 (2009)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Rudnicki, L., Walborn, S.P., Toscano, F.: Optimal uncertainty relations for extremely coarse-grained measurements. Phys. Rev. A 85, 042115 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Maccone, L., Pati, A.K.: Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Adabi, F., Haseli, S., Salimi, S.: Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. EPL 115, 60004 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Zozor, S., Bosyk, G.M., Portesi, M.: General entropy-like uncertainty relations in finite dimensions. J. Phys. A 47, 495302 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rudnicki, L., Puchala, Z., Życzkowski, K.: Strong majorization entropic uncertainty relations. Phys. Rev. A 89, 052115 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Liu, S., Mu, L.-Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, J., Zhang, Y., Yu, C.-S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Xiao, Y., Jing, N., Fei, S.-M., Li, T., Li-Jost, X., Ma, T., Wang, Z.-X.: Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A 93, 042125 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Rudnicki, L.: Majorization approach to entropic uncertainty relations for coarse-grained observables. Phys. Rev. A 91, 032123 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15, 981 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  37. 37.
    Yuan, X., Zhao, Q., Girolami, D., Ma, X.: Interplay between local quantum randomness and non-local information access. arXiv:1605.07818 (2016)
  38. 38.
    Yuan, X., Bai, G., Peng, T., Ma, X.: Quantum uncertainty relation using coherence. Phys. Rev. A 96, 032313 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Ma, T., Zhao, M.-J., Zhang, H.-J., Fei, S.-M., Long, G.-L.: Accessible coherence and coherence distribution. Phys. Rev. A 95, 042328 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Zhang, J., Zhang, Y., Yu, C.-S.: The measurement-disturbance relation and the disturbance trade-off relation in terms of relative entropy. Int. J. Theor. Phys. 55, 3943 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KurdistanSanandajIran
  2. 2.Department of PhysicsUrmia University of TechnologyUrmiaIran

Personalised recommendations