Advertisement

Sequential quantum secret sharing in noisy environments

  • Parvaneh Khakbiz
  • Marzieh AsoudehEmail author
Article
  • 90 Downloads

Abstract

Sequential quantum secret sharing (QSS) schemes do not use entangled states for secret sharing, rather they rely on sequential operations of the players on a single state which is circulated between the players. In order to check the viability of these schemes under imperfect operations and noise in the channels, we consider one such scheme in detail and show that under moderate conditions it is still possible to extract viable secure shared keys in this scheme. Although we specifically consider only one type of sequential scheme and three different noise models, our method is fairly general to be applied to other QSS schemes and noise models as well.

Keywords

Quantum secret sharing Noise Sequential 

Notes

Acknowledgements

This work was financially supported by the Grant no. 96011347 from Iran National Science Foundation (INSF). M. A. would like to thank Abdus Salam International Center for Theoretical Physics (ICTP), where part of this research was carried out. She also thanked V. Karimipour for many discussions and Fabio Benatti for his valuable comments.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public keydistribution and coin tossing. In: Proceedings of IEEEInternational Conference on Computers, Systems and SignalProcessing, vol. 175, pp. 8. New York (1984)Google Scholar
  2. 2.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    De Sen, A., Sen, U., Zukowski, M.: Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states. Phys. Rev. A 68, 032309 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 59, 1829 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Xiao, L., Lu Long, G., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, Z-j, Man, Z-x: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Deng, F.-G., Long, G.L., Zhou, H.-Y.: Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing. Phys. Lett. A 340, 43 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, Y.-A., et al.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2,3) threshold quantum secret sharing schemes. New J. Phys. 5, 4 (2003)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangiera, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Yan, F.-L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    He, G.-P.: Secret sharing without monitoring signal disturbance. Phys. Rev. Lett. 98, 028901 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping; using single states instead of entanglement. Phys. Rev. A 92, 030301 (2015). (Rapid Communications)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Sequential quantum secret sharing in noisy environments (preprint). arXiv:1501.05582
  23. 23.
    Chen, K., Lo, H.-K.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Ray, M., Chatterjee, S., Chakrabarty, I.: Sequential quantum secret sharing in a noisy environment aided with weak measurements. Phys. J. D 70, 114 (2016)ADSGoogle Scholar
  26. 26.
    Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channels. Quantum Inf. Comput. 12, 0253 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bohmann, M., Sperling, J., Vogel, W.: Entanglement and phase properties of noisy NOON states. Phys. Rev. A 91, 042332 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Bohmann, M., Sperling, J., Vogel, W.: Entanglement verification ofnoisy NOON states. Phys. Rev. A 96, 012321 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, Z-j, Li, Y., Man, Z-x: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhu, X., Fan, Z.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z-j: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Schmid, C., et al.: Reply to comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98, 028902 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    He, G.P., Wang, Z.D.: Single qubit quantum secret sharing with improved security. Quantum Inf. Comput. 10, 28 (2010)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5, 4 (2003)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Wu, Y., Cai, R., He, G., Zhang, J.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Proc. 13, 1085 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAzad University, Northern BranchTehranIran

Personalised recommendations