Advertisement

Triangle-like inequalities related to coherence and entanglement negativity

  • Zhi-Xiang JinEmail author
  • Xianqing Li-Jost
  • Shao-Ming Fei
Article

Abstract

Quantum coherence and entanglement are two key features in quantum mechanics and play important roles in quantum information processing and quantum computation. We provide a general triangle-like inequality satisfied by the \(l_1\)-norm measure of coherence for convex combination of arbitrary n pure states of a quantum state \(\rho \). Furthermore, we present triangle-like inequality for the convex-roof extended negativity for any states of rank 2, which gives a positive answer to a conjecture raised in Dai et al. (Phys. Rev. A 96:062308, 2017). Detailed examples are given to illustrate the relations characterized by the triangle-like inequalities.

Keywords

Triangle-like inequality Quantum coherence Convex-roof extended negativity 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments which helped to improve the results of the manuscript. This work is supported by the NSF of China under Grant No. 11675113 and NSF of Beijing under No. KZ201810028042.

References

  1. 1.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Yu, C.S., Song, H.S.: Bipartite concurrence and localized coherence. Phys. Rev. A 80, 022324 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, C.S., Yang, S.R., Guo, B.Q.: Total quantum coherence and its applications. Quant. Inf. Process. 15, 3773 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Singh, U., Zhang, L., Pati, A.K.: Average coherence and its typicality for random pure states. Phys. Rev. A 93, 032125 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Bu, K.F., Singh, U., Fei, S.M., Pati, A.K., Wu, J.D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Qi, X., Gao, T., Yan, F.L.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)MathSciNetGoogle Scholar
  24. 24.
    Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Bu, K.F., Li, L., Wu, J.D., Fei, S.M.: Duality relation between coherence and path information in the presence of quantum memory. J. Phys. A 51, 085304 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Dai, Y., You, W., Dong, Y., Zhang, C.: Triangle inequalities in coherence measures and entanglement concurrence. Phys. Rev. A 96, 062308 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Audenaert, K., Verstraete, F., De Moor, B.: Variational characterizations of separability and entanglement of formation. Phys. Rev. A 64, 052304 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Badziag, P., Deuar, P., Horodecki, M., Horodecki, P., Horodecki, R.: Concurrence in arbitrary dimensions. J. Mod. Opt. 49, 1289 (2002)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Horodeki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Dur, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A. 61, 062313 (2000)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Kim, J.S., Das, A., Sanders, B.S.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A. 79, 012329 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Mathematics and StatisticsHainan Normal UniversityHaikouChina

Personalised recommendations