Triangle-like inequalities related to coherence and entanglement negativity
Abstract
Quantum coherence and entanglement are two key features in quantum mechanics and play important roles in quantum information processing and quantum computation. We provide a general triangle-like inequality satisfied by the \(l_1\)-norm measure of coherence for convex combination of arbitrary n pure states of a quantum state \(\rho \). Furthermore, we present triangle-like inequality for the convex-roof extended negativity for any states of rank 2, which gives a positive answer to a conjecture raised in Dai et al. (Phys. Rev. A 96:062308, 2017). Detailed examples are given to illustrate the relations characterized by the triangle-like inequalities.
Keywords
Triangle-like inequality Quantum coherence Convex-roof extended negativityNotes
Acknowledgements
The authors would like to thank the anonymous referees for their valuable comments which helped to improve the results of the manuscript. This work is supported by the NSF of China under Grant No. 11675113 and NSF of Beijing under No. KZ201810028042.
References
- 1.Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
- 2.Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 3.Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
- 4.Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
- 5.Yu, C.S., Song, H.S.: Bipartite concurrence and localized coherence. Phys. Rev. A 80, 022324 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 6.Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRefGoogle Scholar
- 7.Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
- 8.Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
- 9.Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 10.Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
- 11.Yu, C.S., Yang, S.R., Guo, B.Q.: Total quantum coherence and its applications. Quant. Inf. Process. 15, 3773 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 12.Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)ADSCrossRefGoogle Scholar
- 13.Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRefGoogle Scholar
- 14.Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)ADSCrossRefGoogle Scholar
- 15.Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)ADSCrossRefGoogle Scholar
- 16.Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)ADSCrossRefGoogle Scholar
- 17.Singh, U., Zhang, L., Pati, A.K.: Average coherence and its typicality for random pure states. Phys. Rev. A 93, 032125 (2016)ADSCrossRefGoogle Scholar
- 18.Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)ADSCrossRefGoogle Scholar
- 19.Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)ADSCrossRefGoogle Scholar
- 20.Bu, K.F., Singh, U., Fei, S.M., Pati, A.K., Wu, J.D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 21.Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
- 22.Qi, X., Gao, T., Yan, F.L.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)MathSciNetCrossRefGoogle Scholar
- 23.Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)MathSciNetGoogle Scholar
- 24.Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)ADSCrossRefGoogle Scholar
- 25.Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRefGoogle Scholar
- 26.Bu, K.F., Li, L., Wu, J.D., Fei, S.M.: Duality relation between coherence and path information in the presence of quantum memory. J. Phys. A 51, 085304 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 27.Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)ADSCrossRefGoogle Scholar
- 28.Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRefGoogle Scholar
- 29.Dai, Y., You, W., Dong, Y., Zhang, C.: Triangle inequalities in coherence measures and entanglement concurrence. Phys. Rev. A 96, 062308 (2017)ADSCrossRefGoogle Scholar
- 30.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 31.Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 32.Audenaert, K., Verstraete, F., De Moor, B.: Variational characterizations of separability and entanglement of formation. Phys. Rev. A 64, 052304 (2001)ADSCrossRefGoogle Scholar
- 33.Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 34.Badziag, P., Deuar, P., Horodecki, M., Horodecki, P., Horodecki, R.: Concurrence in arbitrary dimensions. J. Mod. Opt. 49, 1289 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 35.Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 36.Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 37.Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)ADSCrossRefGoogle Scholar
- 38.Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 39.Horodeki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
- 40.Dur, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A. 61, 062313 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 41.Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 42.Kim, J.S., Das, A., Sanders, B.S.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A. 79, 012329 (2009)ADSCrossRefGoogle Scholar