Advertisement

Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution

  • Xuyang WangEmail author
  • Yanxia Cao
  • Pu Wang
  • Yongmin LiEmail author
Article

Abstract

In this work, a comparison study between unidimensional (UD) coherent-state and UD squeezed-state protocols is performed in the continuous variable quantum key distribution domain. First, a UD squeezed-state protocol is proposed, and the equivalence between the prepare-and-measure and entanglement-based schemes of UD squeezed-state protocol is proved. Then, the security of the UD squeezed-state protocol under collective attack in realistic conditions is analyzed. Finally, the performance of the two UD protocols is compared. Based on the uniform expressions established in our study, the squeezed- and coherent-state protocols can be analyzed simply by varying the squeezing parameter.

Keywords

Unidimensional squeezed-state protocol Unidimensional coherent-state protocol Continuous variable quantum key distribution 

Notes

Acknowledgements

This research was supported by the Key Project of the Ministry of Science and Technology of China (2016YFA0301403), National Natural Science Foundation of China (NSFC) (11504219, 61378010), Shanxi 1331KSC, and Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

References

  1. 1.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61(1), 010303 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61(2), 022309 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cerf, N.J., Levy, M., Assche, G.V.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63(5), 052311 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. Phys. Rev. A 63(2), 022309 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Silberhorn, C., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys. Rev. Lett. 89(16), 167901 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    García-Patrón, R., Cerf, N.J.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(13), 130501 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180504 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Zhao, Y.B., Heid, M., Rigas, J., Lutkenhaus, N.: Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A 79(1), 012307 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, X.Y., Liu, J.Q., Li, X.F., Li, Y.M.: Generation of stable and high extinction ratio light pulses for continuous variable quantum key distribution. IEEE J. Quantum Electron. 51(6), 5200206 (2015)Google Scholar
  23. 23.
    Huang, D., Huang, P., Lin, D., Zeng, G.: Long distance continuous variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Yang, S.S., Bai, Z.L., Wang, X.Y., Li, Y.M.: FPGA-based implementation of size-adaptive privacy amplification in quantum key distribution. Photonics J. 9(6), 7600308 (2017)Google Scholar
  25. 25.
    Li, Y.M., Wang, X.Y., Bai, Z.L., Liu, W.Y., Yang, S.S., Peng, K.C.: Continuous variable quantum key distribution. Chin. Phys. B 26(4), 040303 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92(6), 062337 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Brádler, K., Weedbrook, C.: Security proof of continuous-variable quantum key distribution using three coherent states. Phys. Rew. A 97(2), 022310 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Qi, B., Evans, P.G., Grice, W.P.: Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution. Phys. Rev. A 97(1), 012317 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, X.Y., Liu, W.Y., Wang, P., Li, Y.M.: Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 95(6), 062330 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, P., Wang, X.Y., Li, J.Q., Li, Y.M.: Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 25(23), 27995 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Inf. 4, 21 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Laudenbach, F., Pacher, C., Fung, C.F., Poppe, A., Peev, M., Schrenk, B., Hentschel, M., Walther, P., Hübel, H.: Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations. Adv. Quantum Technol. 1, 1800011 (2018)CrossRefGoogle Scholar
  33. 33.
    Wang, P., Wang, X.Y., Li, Y.M.: Security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations. Entropy 20, 157 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Usenko, V.C., Filip, R.: Squeezed-state quantum key distribution upon imperfect reconciliation. New J. Phys. 13, 113007 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Karinou, F., Brunner, H.H., Fung, C.F., Comandar, L.C., Bettelli, S., Hillerkuss, D., Kuschnerov, M., Mikroulis, S., Wang, D., Xie, C., Peev, M., Poppe, A.: Toward the integration of CV quantum key distribution in deployed optical networks. IEEE Photonics Technol. Lett. 30(7), 650 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent States. Phys. Rev. Lett. 114(7), 070501 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Leverrier, A.: Security of continuous variable quantum key distribution via a Gaussian de finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanChina
  2. 2.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations