Advertisement

Topological quantum phase transitions in the 2-D Kitaev honeycomb model

  • Qi Chen
  • Guo-Qing Zhang
  • Jun-Qing Cheng
  • Jing-Bo XuEmail author
Article
  • 92 Downloads

Abstract

We study the topological quantum phase transition in the 2-D Kitaev honeycomb model by making use of the square root of the quantum Jensen–Shannon divergence and find that the square root of the quantum Jensen–Shannon divergence exhibits singular behaviors at the critical point of quantum phase transition. The scaling behaviors of the square root of the quantum Jensen–Shannon divergence are also examined from the first-order derivatives, and we demonstrate that the square root of the quantum Jensen–Shannon divergence obeys universal finite-size scaling laws. Furthermore, we explore the performance of quantum discord and the relative entropy coherence of the system. It is shown that quantum discord and relative entropy coherence display similar critical behaviors, and the square root of the quantum Jensen–Shannon divergence and quantum discord can serve as good indicators for quantum phase transitions.

Keywords

Quantum Jensen–Shannon divergence Quantum coherence Quantum discord Quantum phase transition 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11274274) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017FZA3005 and 2016XZZX002-01).

References

  1. 1.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93(25), 250404 (2004)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517–576 (2008)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Gu, S.J., Lin, H.Q., Li, Y.Q.: Entanglement, quantum phase transition, and scaling in the \(\rm XXZ\) chain. Phys. Rev. A 68, 042330 (2003)CrossRefGoogle Scholar
  7. 7.
    Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Luo, D.W., Xu, J.B.: Quantum phase transition by employing trace distance along with the density matrix renormalization group. Ann. Phys. 354, 298–305 (2015)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)CrossRefADSGoogle Scholar
  10. 10.
    Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72, 052310 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991).  https://doi.org/10.1109/18.61115 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)CrossRefADSGoogle Scholar
  13. 13.
    Lamberti, P.W., Majtey, A.P., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen–Shannon divergence. Phys. Rev. A 77, 052311 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Sachdev, S.: Quantum phase transitions. In: Handbook of Magnetism and Advanced Magnetic Materials (2007).  https://doi.org/10.1002/9780470022184.hmm108
  16. 16.
    Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mančal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137), 782–786 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281), 644–647 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)CrossRefADSGoogle Scholar
  19. 19.
    Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)CrossRefADSGoogle Scholar
  20. 20.
    Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 80(1), 014403 (2009)CrossRefADSGoogle Scholar
  22. 22.
    Yang, S., Gu, S.J., Sun, C.P., Lin, H.Q.: Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A 78(1), 012304 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Feng, X.Y., Zhang, G.M., Xiang, T.: Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett. 98(8), 087204 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Lee, D.H., Zhang, G.M., Xiang, T.: Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions. Phys. Rev. Lett. 99(19), 196805 (2007)CrossRefADSGoogle Scholar
  25. 25.
    Schmidt, K.P., Dusuel, S., Vidal, J.: Emergent fermions and anyons in the Kitaev model. Phys. Rev. Lett. 100(5), 057208 (2008)CrossRefADSGoogle Scholar
  26. 26.
    Vidal, J., Schmidt, K.P., Dusuel, S.: Perturbative approach to an exactly solved problem: Kitaev honeycomb model. Phys. Rev. B 78(24), 245121 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91(9), 090402 (2003)CrossRefADSGoogle Scholar
  28. 28.
    André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636 (2006)CrossRefGoogle Scholar
  29. 29.
    Chen, H.D., Nussinov, Z.: Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations. J. Phys. A Math. Theor. 41(7), 075001 (2008)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 80, 014403 (2009)CrossRefADSGoogle Scholar
  31. 31.
    Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89(13), 134101 (2014)CrossRefADSGoogle Scholar
  32. 32.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44(1), 015503 (2010)CrossRefADSGoogle Scholar
  34. 34.
    Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)CrossRefADSGoogle Scholar
  35. 35.
    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401 (2015)CrossRefADSGoogle Scholar
  36. 36.
    Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A 98, 022317 (2018)CrossRefADSGoogle Scholar
  37. 37.
    Cui, J., Cao, J.P., Fan, H.: Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model. Phys. Rev. A 82, 022319 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qi Chen
    • 1
  • Guo-Qing Zhang
    • 1
  • Jun-Qing Cheng
    • 1
  • Jing-Bo Xu
    • 1
    Email author
  1. 1.Zhejiang Institute of Modern Physics and Department of PhysicsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations