Quantization and experimental realization of the Colonel Blotto game
- 83 Downloads
Abstract
We present a quantum mechanical version of the Colonel Blotto game, where two players, Blotto and Enemy, collocate their soldiers (resources) sequentially in a finite number of territories. We analyse the representative classical cases of this game as well as the trivial case—which on its turn has no interest at all in the point of view of classical game theory—where, surprisingly, a player that could control a single parameter can win the game even if he/she is greatly outnumbered by his/her opponent. Besides the theoretical study we present an experimental realization of classical game by using linear optics circuits as well as a proposal of an experimental investigation of the quantized game. Finally, in order to check our quantization scheme we also present computer simulation results.
Keywords
Quantum games Optical circuits Transverse modes Polarization modesNotes
Acknowledgements
The authors gratefully acknowledge the financial support of Brazilian’s agencies CAPES, FAPERJ, CNPq and INCT—Quantum Information. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
References
- 1.Press, W.H., Dyson, F.J.: Iterated prisoner’s dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl. Acad. Sci. 109(26), 10409 (2012)ADSCrossRefGoogle Scholar
- 2.von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behavior, 60th edn. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
- 3.Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)ADSMathSciNetCrossRefGoogle Scholar
- 4.Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)ADSMathSciNetCrossRefGoogle Scholar
- 5.Fra̧ckiewicz, P.: The ultimate solution to the quantum battle of the Sexes game, J. Phys. A 42(36) (2009)Google Scholar
- 6.Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46(1), 318 (2008)CrossRefGoogle Scholar
- 7.Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary game. Physica A 246(3), 407 (1997)ADSCrossRefGoogle Scholar
- 8.de Ponte, M.A., Santos, A.C.: Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf. Process. 17(6), 149 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 9.Flitney, A.P., Abbott, D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)ADSCrossRefGoogle Scholar
- 10.Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751 (2007)CrossRefGoogle Scholar
- 11.Zeng, Q., Davis, B.R., Abbott, D.: Reverse auction: the lowest unique positive integer game. Fluctuation Noise Lett. 7(04), L439 (2007)CrossRefGoogle Scholar
- 12.Makowski, M.: Transitivity versus intransitivity in decision making process—an example in quantum game theory. Phys. Lett. A 373, 2125 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 13.Makowski, M., Piotrowski, E.W.: Transitivity of an entangled choice. J. Phys. A 44, 075301 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 14.Flitney, A.P., Abbott, D.: Quantum two-and three-person duels. J. Opt. B 6(8), S860 (2004)ADSCrossRefGoogle Scholar
- 15.Schmidt, A.G.M., Paiva, M.M.: Quantum duel revisited. J. Phys. A 45(12), 125304 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 16.Balthazar, W.F., Huguenin, J.A.O., Schmidt, A.G.M.: Simultaneous quantum duel. J. Phys. Soc. Jpn. 84(12), 124002 (2015)ADSCrossRefGoogle Scholar
- 17.Balthazar, W.F., Passos, M.H.M., Schmidt, A.G.M., Caetano, D.P., Huguenin, J.A.O.: Experimental realization of the quantum duel game using linear optical circuits. J. Phys. B 48(16), 165505 (2015)ADSCrossRefGoogle Scholar
- 18.Amengual, P., Toral, R.: Truels, or survival of the weakest. Comput. Sci. Eng. 8(5), 88 (2006)CrossRefGoogle Scholar
- 19.Chowdhury, S.M., Kovenock, D., Sheremeta, R.M., Roman, M.: An experimental investigation of Colonel Blotto games. Econ. Theory 52(3), 833 (2013)MathSciNetCrossRefGoogle Scholar
- 20.Gross, O., Wagner, R.: A continuous colonel blotto game. Tech. rep, RAND PROJECT AIR FORCE SANTA MONICA CA (1950)Google Scholar
- 21.Roberson, B.: The colonel blotto game. Econ. Theory 29(1), 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 22.Roberson, B., Kvasov, D.: The non-constant-sum Colonel Blotto game. Econ. Theory 51(2), 397 (2012)MathSciNetCrossRefGoogle Scholar
- 23.Hendricks, K., Weiss, A., Wilson, C.: The war of attrition in continuous time with complete information. Int. Econ. Rev. 663–680 (1988)Google Scholar
- 24.Hodler, R., Yektaş, H.: All-pay war. Games Econ. Behav. 74(2), 526 (2012)MathSciNetCrossRefGoogle Scholar
- 25.Myerson, R.B.: Incentives to cultivate favored minorities under alternative electoral systems. Am. Polit. Sci. Rev. 87(4), 856 (1993)CrossRefGoogle Scholar
- 26.Szentes, B., Rosenthal, R.W.: Three-object two-bidder simultaneous auctions: chopsticks and tetrahedra. Games Econ. Behav. 44(1), 114 (2003)MathSciNetCrossRefGoogle Scholar
- 27.Golman, R., Page, S.E.: General Blotto: games of allocative strategic mismatch. Public Choice 138(3–4), 279 (2009)CrossRefGoogle Scholar
- 28.Lu, J., Zhou, L., Kuang, L.M.: Linear optics implementation for quantum game with two players. Phys. Lett. A 330(1–2), 48 (2004)ADSMathSciNetCrossRefGoogle Scholar
- 29.Kolenderski, P., Sinha, U., Youning, L., Zhao, T., Volpini, M., Cabello, A., Laflamme, R., Jennewein, T.: Aharonov–Vaidman quantum game with a Young-type photonic qutrit. Phys. Rev. A 86(1), 012321 (2012)ADSCrossRefGoogle Scholar
- 30.Pinheiro, A.R.C., Souza, C.E.R., Caetano, D.P., Huguenin, J.A.O., Schmidt, A.G.M., Khoury, A.Z.: Vector Vortex implementation of a quantum game. J. Opt. Soc. Am. B 30(12), 3210 (2013)ADSCrossRefGoogle Scholar
- 31.Borges, C.V.S., Hor-Meyll, M., Huguenin, J.A.O., Khoury, A.Z.: Bell-like inequality for the spin-orbit separability of a laser beam. Phys. Rev. A 82(3), 033833 (2010)ADSCrossRefGoogle Scholar
- 32.Kagalwala, K.H., Di Giuseppe, G., Abouraddy, A.F., Saleh, B.E.: Bell’s measure in classical optical coherence. Nat Photonics 7(1), 72 (2013)ADSCrossRefGoogle Scholar
- 33.Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Galvão, E.F., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41(24), 5797 (2016)ADSCrossRefGoogle Scholar
- 34.Milione, G., Nguyen, T.A., Leach, J., Nolan, D.A., Alfano, R.R.: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887 (2015)ADSCrossRefGoogle Scholar
- 35.Souza, C.E.R., Borges, C.V.S., Khoury, A.Z., Huguenin, J.A.O., Aolita, L., Walborn, S.: Quantum key distribution without a shared reference frame. Phys. Rev. A 77(3), 032345 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 36.Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658 (2014)ADSCrossRefGoogle Scholar
- 37.Balthazar, W.F., Huguenin, J.A.O.: Conditional operation using three degrees of freedom of a laser beam for application in quantum information. J. Opt. Soc. Am. B 33(8), 1649 (2016)ADSCrossRefGoogle Scholar
- 38.da Silva, B.P., Leal, M.A., Souza, C.E.R., Galvão, E.F., Khoury, A.Z.: Spin-orbit laser mode transfer via a classical analogue of quantum teleportation. J. Phys. B 49(5), 055501 (2016)ADSCrossRefGoogle Scholar
- 39.Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286 (1951)MathSciNetCrossRefGoogle Scholar
- 40.Gerrard, A., Burch, J.M.: Introduction to Matrix Methods in Optics. Courier Corporation (1994)Google Scholar