Advertisement

Any quantum network is structurally controllable by a single driving signal

  • Michael SiomauEmail author
Article

Abstract

Control theory concerns with the questions if and how it is possible to drive the behavior of a complex dynamical system. A system is said to be controllable if we can drive it from any initial state to any desired state in finite time. For many complex networks, the precise knowledge of system parameters lacks. But, it is possible to make a conclusion about network controllability by inspecting its structure. Classical theory of structural controllability is based on the Lin’s structural controllability theorem, which gives necessary and sufficient conditions to conclude whether a network is structurally controllable. Due to this fundamental theorem, we may identify a minimum driver vertex set, whose control with independent driving signals is sufficient to make the whole system controllable. I show that Lin’s theorem does not apply to quantum networks, if local operations and classical communication between vertices are allowed. Any quantum network can be modified to be structurally controllable obeying a single driving vertex.

Keywords

Quantum networks Controllability Linear quantum dynamics 

References

  1. 1.
    Liao, S.-K., Cai, W.-Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, P.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, R., Peng, C.-Z., Wang, J.-Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Castelvecchi, D.: The quantum internet has arrived (and it hasnt). Nature 554, 289–292 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum Internet: From Communication to Distributed Computing! arXiv:1805.04360
  5. 5.
    Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)CrossRefGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Perseguers, S., Lewenstein, M., Acin, A., Cirac, J.I.: Quantum random networks. Nat. Phys. 6, 539–543 (2010)CrossRefGoogle Scholar
  8. 8.
    Manzano, G., Galve, F., Giorgi, G.L., Hernndez-Garcia, E., Zambrini, R.: Synchronization, quantum correlations and entanglement in oscillator networks. Sci. Rep. 3, 1439 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Acin, A., Cirac, I.J., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)CrossRefGoogle Scholar
  10. 10.
    Siomau, M.: Quantum entanglement percolation. J. Phys. B. At. Mol. Opt. Phys. 49, 175506 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Kockenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbruggen, T., Sugny, D., Wilhelm, F.K.: Training Schrdingers cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, X., Pemberton-Ross, P., Schirmer, S.G.: Symmetry and subspace controllability for spin networks with a single-node control. IEEE Trans. Autom. Control 57, 1945–1956 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Burgarth, D., Bose, S., Bruder, C., Giovannetti, V.: Local controllability of quantum networks. Phys. Rev A 79, 060305(R) (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Lin, C.T.: Structural controllability. IEEE Trans. Autom. Control 19, 201–208 (1974)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, Y.-Y., Barabasi, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88, 035006 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Siomau, M.: Structural complexity of quantum networks. AIP Conf. Proc. 1742, 030017 (2016)CrossRefGoogle Scholar
  18. 18.
    Stelmachovic, P., Buzek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev A 64, 062106 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    See section 12 Cascaded Quantum Systems of Ref. [16] for detailsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DivisionHigher Colleges of TechnologyDubaiUAE

Personalised recommendations