Measurement-based quantum correlation in mixed-state quantum metrology

  • Uman Khalid
  • Youngmin JeongEmail author
  • Hyundong ShinEmail author


Entanglement is crucial for realizing quantum advantages in metrology. However, entanglement has been outcast by discord in order to capture the worst-case sensitivity in quantum metrology to estimate an unknown parameter. In contrast to traditional measures—namely entanglement and discord—there exist noncommutativity-based quantum correlation measures induced by local von Neumann measurements. Such correlations are more comprehensive than entanglement and discord in quantum information processing. In this paper, we investigate the metrological resourcefulness of measurement-based quantum correlations (MbQCs). We provide a lower bound on the minimum precision of the estimation in terms of the MbQC. We show that the MbQC is more resourceful in quantum metrology than entanglement and super quantum discord. For any non-product state, the MbQC gives a metrological insight into the sensitivity of a mixed state toward perturbation caused by a local von Neumann measurement.


Quantum measurement Quantum correlations Quantum metrology 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2016R1A2B2014462) and by the Basic Science Research Program through the NRF funded by the Ministry of Education (No. 2018R1D1A1B07050584), and ICT R&D program of MSIP/IITP [R0190-15-2030, reliable cryptosystem standards and core technology development for secure quantum key distribution network].


  1. 1.
    Girolami, D.: Interpreting quantum discord in quantum metrology. J. Phys. Conf. Ser. 626(1), 012042 (2015)CrossRefGoogle Scholar
  2. 2.
    Qaisar, S., ur Rehman, J., Jeong, Y., Shin, H.: Practical deterministic secure quantum communication in a Lossy channel. Prog. Theor. Exp. Phys. 2017(4), 041A01 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Majtey, A.P., Bussandri, D.G., Osán, T.M., Lamberti, P.W., Valdés-Hernández, A.: Problem of quantifying quantum correlations with non-commutative discord. Quantum Inf. Process. 16(9), 226 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Farace, A., Pasquale, A.D., Rigovacca, L., Giovannetti, V.: Discriminating strength: a bonafide measure of non-classical correlations. New J. Phys. 16(7), 073010 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)Google Scholar
  10. 10.
    Bromley, T.R., Silva, I.A., Oncebay-Segura, C.O., Soares-Pinto, D.O., deAzevedo, E.R., Tufarelli, T., Adesso, G.: There is more to quantum interferometry than entanglement. Phys. Rev. A 95, 052313 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Luo, S.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53(3), 243–251 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ma, J., Xiao Huang, Y., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Augusiak, R., Kolodynski, J., Streltsov, A., Bera, M.N., Acín, A., Lewenstein, M.: Asymptotic role of entanglement in quantum metrology. Phys. Rev. A 94, 012339 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Bogaert, P., Girolami, D.: Metrological measures of non-classical correlations. In: Lectures on General Quantum Correlations and Their Applications, pp. 159–179 (2017)Google Scholar
  15. 15.
    Hadfi, H.E., Taleb, Y.A., Daoud, M.: Quantum interferometric power and the role of nonclassical correlations in quantum metrology for a special class of two-qubit states. Int. J. Mod. Phys. B 31(08), 1750052 (2017)CrossRefGoogle Scholar
  16. 16.
    Erol, V., Ozaydin, F., Altintasi, A.A.: Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems. Sci. Rep. 4, 5422 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Ozaydin, F.: Quantum Fisher information of a 3 \({\times }\) 3 bound entangled state and its relation with geometric discord. Int. J. Theor. Phys. 54(9), 3304–3310 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Guo, Y., Li, X., Li, B., Fan, H.: Quantum correlation induced by the average distance between the reduced states. Int. J. Theor. Phys. 54(6), 2022–2030 (2015)CrossRefGoogle Scholar
  19. 19.
    Pires, D.P., Céleri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Li, T., Ze-Qian, C.: Concurrence and Wigner–Yanase skew information. Chin. Phys. Lett. 23(3), 542 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Measurement-induced nonlocality based on Wigner–Yanase skew information. EPL 114(1), 10007 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268(3), 158–160 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Spehner, D., Illuminati, F., Orszag, M., Roga, W.: Geometric measures of quantum correlations with Bures and Hellinger distances. In: Lectures on General Quantum Correlations and Their Applications, pp. 105–157 (2017)zbMATHGoogle Scholar
  25. 25.
    Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49(47), 473001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, B., Chen, L., Fan, H.: Non-zero total correlation means non-zero quantum correlation. Phys. Lett. A 378(18), 1249–1253 (2014)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, L., Datta, A., Walmsley, I.A.: Precision metrology using weak measurements. Phys. Rev. Lett. 114, 210801 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Spehner, D.: Quantum correlations and distinguishability of quantum states. J. Math. Phys. 55(7), 075211 (2014)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Peters, N.A., Wei, T.C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 70, 052309 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Rajagopal, A.K., Nayak, A.S., Devi, A.R.U.: From the quantum relative Tsallis entropy to its conditional form: separability criterion beyond local and global spectra. Phys. Rev. A 89, 012331 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Guo, Y., Wu, S.: Quantum correlation exists in any non-product state. Sci. Rep. 4, 7179 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Boixo, S., Datta, A., Flammia, S.T., Shaji, A., Bagan, E., Caves, C.M.: Quantum-limited metrology with product states. Phys. Rev. A 77, 012317 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic EngineeringKyung Hee UniversityYongin-siKorea

Personalised recommendations