Advertisement

Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel

  • Lin Liu
  • Min XiaoEmail author
  • Xiuli Song
Article
  • 89 Downloads

Abstract

Semiquantum communication permits a communication party with only limited quantum ability (i.e., “classical” ability) to communicate securely with a powerful quantum counterpart and will obtain a significant advantage in practice when the completely quantum world has not been built up. At present, various semiquantum schemes for key distribution, secret sharing and secure communication have been proposed. In a quantum dialogue (QD) scenario, two communicants mutually transmit their respective secret messages and may have equal power (such as two classical parties). Based on delegated quantum computation model, this work extends the original semiquantum model to the authenticated semiquantum dialogue (ASQD) protocols, where two “classical” participants can mutually transmit secret messages without any information leakage and quantum operations are securely delegated to a quantum server. To make the proposed ASQD protocols more practical, we assume that the quantum channel is a collective noise channel and the quantum server is untrusted. The security analysis shows that the proposed protocols are robust even when the delegated quantum server is a powerful adversary.

Keywords

Authenticated semiquantum dialogue Delegated quantum computation Collective-dephasing noise Collective-rotation noise Unitary collective noise 

Notes

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant 2017YFB0802300 and Foundation Science and Forefront Technology of Chongqing Science and Technology Commission of China under Grant No. cstc2016jcyjA0571.

References

  1. 1.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13(11), 2451–2461 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Shen, D., Ma, W., Yin, X., Li, X.: Quantum dialogue with authentication based on bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16(2), 49 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 1–30 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Bin, G.U., Zhang, C.Y.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(08), 1479–1489 (2010)CrossRefGoogle Scholar
  17. 17.
    Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 762–776 (2004)MathSciNetGoogle Scholar
  19. 19.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Walton, Z., Abouraddy, A.F., Sergienko, A., Saleh, B., Teich, M.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 1744–1747 (2009)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical partys measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, M.H., Li, H.F., Xia, Z.Q., Peng, J.Y., Peng, J.Y.: Semiquantum secure direct communication using epr pairs. Quantum Inf. Process. 16(5), 117 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Lu, H., Cai, Q.: Quantum key distribution with classical alice. Int. J. Quantum Inf. 06(06), 1195–1202 (2009)CrossRefGoogle Scholar
  32. 32.
    Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Compt. 5(6), 456–466 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)Google Scholar
  35. 35.
    Li, Q., Chan, W.H., Wu, C., Wen, Z.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89(4), 2748–2753 (2014)Google Scholar
  36. 36.
    Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111(2), 020502 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)CrossRefGoogle Scholar
  38. 38.
    Chien, C.H., Meter, R.V., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. Acm J. Emerg. Technol. Comput. Syst. 12(1), 1–26 (2015)CrossRefGoogle Scholar
  39. 39.
    Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93(5), 052307 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5(2), 3074 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Li, Q., Chan, W.H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B 24(7), 114–124 (2015)Google Scholar
  48. 48.
    Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 441–445 (2007)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Kielpinski, D., Meyer, V., Rowe, M.A., et al.: A decoherence-free quantum memory using trapped ions. Science 291(5506), 1013–1015 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    Fortunato, E.M., Viola, L., Hodges, J., et al.: Implementation of universal control on a decoherence-free qubit. New. J. Phys. 4(1), 5 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Ollerenshaw, J.E., Lidar, D.A., Kay, L.E.: Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91(21), 217904 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on ghz states. Phys. Lett. A 354(1–2), 67–70 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.School of Cyber Security and Information LawChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations