Advertisement

Quantum Fisher information matrix for unitary processes: closed relation for SU(2)

  • Mohammad Javad Shemshadi
  • Seyed Javad Akhtarshenas
Article

Abstract

Quantum Fisher information plays a central role in the field of quantum metrology. In this paper, we study the problem of quantum Fisher information of unitary processes. Associated with each parameter \(\theta _i\) of unitary process \(U(\varvec{\theta })\), there exists a unique Hermitian matrix \(M_{\theta _i}=i(U^\dagger \partial _{\theta _i} U)\). Except for some simple cases, such as when the parameter under estimation is an overall multiplicative factor in the Hamiltonian, calculation of these matrices is not an easy task to treat even for estimating a single parameter of qubit systems. Using the Bloch vector \(\varvec{m}_{\theta _i}\), corresponding to each matrix \(M_{\theta _i}\), we find a closed relation for the quantum Fisher information matrix of the SU(2) processes for an arbitrary number of estimation parameters and an arbitrary initial state. We extend our results and present an explicit relation for each vector \(\varvec{m}_{\theta _i}\) for a general Hamiltonian with arbitrary parametrization. We illustrate our results by obtaining the quantum Fisher information matrix of the so-called angle-axis parameters of a general SU(2) process. Using a linear transformation between two different parameter spaces of a unitary process, we provide a way to move from quantum Fisher information of a unitary process in a given parametrization to the one of the other parametrizations. Knowing this linear transformation enables one to calculate the quantum Fisher information of a composite unitary process, i.e., a unitary process resulted from successive action of some simple unitary processes. We apply this method for a spin-half system and obtain the quantum Fisher matrix of the coset parameters in terms of the one of the angle-axis parameters.

Keywords

Quantum metrology Quantum Fisher information Unitary processes SU(2) processes 

Notes

Acknowledgements

The authors would like to thank Fereshte Shahbeigi for helpful discussion and comments. This work was supported by Ferdowsi University of Mashhad under Grant No. 3/44195 (1396/04/17).

References

  1. 1.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Huang, J., Wu, S., Zhong, H., Lee, C.: Quantum metrology with cold atoms. Annu. Rev. Cold At. Mol. 2, 365–415 (2014)CrossRefGoogle Scholar
  4. 4.
    Georgescu, I.: Quantum technology: the golden apple. Nat. Phys. 10, 474 (2014)CrossRefGoogle Scholar
  5. 5.
    Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Braginsky, V., Vyatchanin, S.: Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae. Phys. Lett. A 324, 345–360 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Adhikari, R.X.: Gravitational radiation detection with laser interferometry. Rev. Mod. Phys. 86, 121 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    McGuirk, J.M., Foster, G.T., Fixler, J.B., Snadden, M.J., Kasevich, M.A.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Santarelli, G., Laurent, P., Lemonde, P., Clairon, A., Mann, A.G., Chang, S., Luiten, A.N., Salomon, C.: Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Tsang, M.: Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Giovannetti, V., Lloyd, S., Maccone, L., Shapiro, J.H.: Sub-Rayleigh-diffraction-bound quantum imaging. Phys. Rev. A 79, 013827 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Brida, G., Genovese, M., Berchera, I.R.: Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    André, A., Sørensen, A.S., Lukin, M.D.: Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Louchet-Chauvet, A., Appel, J., Renema, J.J., Oblak, D., Kjaergaard, N., Polzik, E.S.: Entanglement-assisted atomic clock beyond the projection noise limit. New J. Phys. 12, 065032 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Borregaard, J., Sørensen, A.S.: Near-Heisenberg-limited atomic clocks in the presence of decoherence. Phys. Rev. Lett. 111, 090801 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Kessler, E.M., Kómár, P., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Holevo, A.S.: Probabilistic and statistical aspects of quantum theory. In: Publications of the Scuola Normale Superiore. Edizioni della Normale (2011)Google Scholar
  22. 22.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)zbMATHGoogle Scholar
  23. 23.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. (N.Y.) 247, 135–173 (1996)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Petz, D.: Covariance and Fisher information in quantum mechanics. J. Phys. A Math. Gen. 35, 929 (2002)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)zbMATHGoogle Scholar
  27. 27.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lee, C.: Adiabatic mach-zehnder interferometry on a quantized Bose-Josephson junction. Phys. Rev. Lett. 97, 150402 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg Limit. Phys. Rev. Lett. 102, 100401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700 (1925)ADSCrossRefGoogle Scholar
  31. 31.
    Bures, D.: An extension of Kakutaniś thoerm on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199–212 (1969)zbMATHGoogle Scholar
  32. 32.
    Uhlmann, A.: Parallel transport and “quantum holonomy” along density operators. Rep. Math. Phys. 24, 229 (1986)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239–242 (1992)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Sarovar, M., Milburn, G.: Optimal estimation of one-parameter quantum channels. J. Phys. A Math. Gen. 39, 8487 (2006)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Lu, X., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian process of open systems. Phys. Rev. A 82, 042103 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)CrossRefGoogle Scholar
  40. 40.
    Ma, J., Huang, Y., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Berrada, K., Abdel-Khalek, S., Obada, A.-S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412–1416 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Berrada, K.: Non-Markovian effect in the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378, 3161–3164 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cramer–Rao bound. Phys. Rev. Lett. 112, 120405 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Ban, M.: Quantum Fisher information of a qubit initially correlated with a non-Markovian environment. Quantum Inf. Process. 14(11), 4163–4177 (2015)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Pang, S., Brun, T.A.: Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A 90, 022117 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Liu, J., Xiong, H.-N., Song, F., Wang, X.: Fidelity susceptibility and quantum Fisher information for density operators with arbitrary ranks. Phys. A Stat. Mech. App. 410, 167 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Liu, J., Jing, X.-X., Zhong, W., Wang, X.-G.: Quantum Fisher information for density matrices with arbitrary ranks. Commun. Theor. Phys. 61, 45 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Liu, J., Jing, X.-X., Wang, X.: Quantum metrology with unitary parametrization processes. Sci. Rep. 5, 8565 (2015)CrossRefGoogle Scholar
  52. 52.
    Jing, X.-X., Liu, J., Xiong, H.-N., Wang, X.: Maximal quantum Fisher information for general su(2) parametrization processes. Phys. Rev. A 92, 012312 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    Boixo, S., Flammia, S.T., Caves, C.M., Geremia, J.: Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Suzuki, J.: Parameter estimation of qubit states with unknown phase parameter. Int. J. Quantum Inf. 13, 1450044 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Suzuki, J.: Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem. J. Math. Phys. 57, 042201 (2016)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962 (1967)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Goldberg, A.Z., James, D.F.V.: Quantum-limited Euler angle measurements using anticoherent states. Phys. Rev. A 98, 032113 (2018)ADSCrossRefGoogle Scholar
  59. 59.
    Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Courier Corporation, Chelmsford (2012)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations