Advertisement

One-step entanglements generation on distant superconducting resonators in the dispersive regime

  • Ming Hua
  • Ming-Jie Tao
  • Faris Alzahrani
  • Aatef Hobiny
  • Hai-Rui Wei
  • Fu-Guo Deng
Article
  • 68 Downloads

Abstract

We present a scalable quantum-bus-based device for generating the entanglement on photons in distant superconducting resonators (SRs). The device is composed of some one-dimensional (1D) SRs \(r_j\) coupled to the quantum bus (another common resonator R) in its different positions assisted by superconducting quantum interferometer devices which are used to tune the coupling strengths between \(r_j\) and R. By using the technique for catching and releasing a photon state in a 1D SR, it can work as an entanglement generator or a node in quantum communication. To demonstrate the performance of this device, we propose a one-step scheme to generate high-fidelity Bell state on photons in two distant SRs. It works in the dispersive regime of \(r_j\) and R, which enables us to extend it to generate high-fidelity multi-Bell states on different resonator pairs simultaneously.

Keywords

Bell state Entanglement Superconducting resonator Superconducting quantum interferometer device 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11704281, 11647042, 11674033, 11474026, 11604012, the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01, and the China Postdoctoral Science Foundation under Grant No. 2018M631438.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)CrossRefGoogle Scholar
  9. 9.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Zhou, L., Dong, H., Liu, Y.X., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Zhou, L., Yang, X., Liu, Y.X., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Li, X.Q., Wu, Y.W., Steel, D.C., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express. 21, 17671 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot microcavity coupled system. Phys. Rev. A 87, 062337 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities. Phys. Rev. A 94, 062310 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25, 16931 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Martinis, J.M.: Superconducting phase qubits. Quantum Inf. Proc. 8, 81 (2009)CrossRefGoogle Scholar
  29. 29.
    Ng, H.T., Nori, F.: Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit. Phys. Rev. A 82, 042317 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Tanamoto, T., Liu, Y.X., Fujita, S., Hu, X.D., Nori, F.: Producing cluster states in charge qubits and flux qubits. Phys. Rev. Lett. 97, 230501 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    You, J.Q., Wang, X.B., Tanamoto, T., Nori, F.: Efficient one-step generation of large cluster states with solid-state circuits. Phys. Rev. A 75, 052319 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Tanamoto, T., Liu, Y.X., Hu, X.D., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102, 100501 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, H.F., Yang, C.P., Nori, F.: Robust and scalable optical one-way quantum computation. Phys. Rev. A 81, 052332 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Wei, L.F., Liu, Y.X., Storcz, M.J., Nori, F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Song, X., Zhang, K.H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Cai, K., Wang, R.X., Yin, Z.Q., Long, G.L.: Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator. Sci. China Phys. Mech. Astron. 60, 070311 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Chirolli, L., Burkard, G., Kumar, S., Divincenzo, D.P.: Superconducting resonators as beam splitters for linear-optics quantum computation. Phys. Rev. Lett. 104, 230502 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Adhikari, P., Hafezi, M., Taylor, J.M.: Nonlinear optics quantum computing with circuit QED. Phys. Rev. Lett. 110, 060503 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Neumeier, L., Leib, M., Hartmann, M.J.: Single-photon transistor in circuit quantum electrodynamics. Phys. Rev. Lett. 111, 063601 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Shen, J.T., Fan, S.H.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Astafiev, O., Zagoskin, A.M., Abdumalikov Jr., A.A., Pashkin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Lalumière, K., Sanders, B.C., van Loo, A.F., Fedorov, A., Wallraff, A., Blais, A.: Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Yin, Y., Chen, Y., Sank, D., O’Malley, P.J.J., White, T.C., Barends, R., Kelly, J., Lucero, E., Mariantoni, M., Megrant, A., Neill, C., Vainsencher, A., Wenner, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Bajjani, E.Z., Nguyen, F., Lee, M., Vale, L.R., Simmonds, R.W., Aumentado, J.: Quantum superposition of a single microwave photon in two different ‘colour’ states. Nat. Phys. 7, 599 (2011)CrossRefGoogle Scholar
  47. 47.
    Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Du, L.H., Hu, Y., Zhou, Z.W., Guo, G.C., Zhou, X.X.: Integrated photonic qubit quantum computing on a superconducting chip. New J. Phys. 12, 063015 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Xiong, S.J., Sun, Z., Liu, J.M., Liu, T., Yang, C.P.: Efficient scheme for generation of photonic NOON states in circuit QED. Opt. Lett. 40, 2221 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Hua, M., Tao, M.J., Deng, F.G.: Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics. Phys. Rev. A 90, 012328 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Strauch, F.W.: All-resonant control of superconducting resonators. Phys. Rev. Lett. 109, 210501 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Yang, C.P., Su, Q.P., Han, S.Y.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)CrossRefGoogle Scholar
  55. 55.
    Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R., García-Ripoll, J.J.: Tunable coupling engineering between superconducting resonators: from sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Srinivasan, S.J., Hoffman, A.J., Gambetta, J.M., Houck, A.A.: Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. Phys. Rev. Lett. 106, 083601 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Physics, School of ScienceTianjin Polytechnic UniversityTianjinChina
  2. 2.Applied Optics Beijing Area Major Laboratory, Department of PhysicsBeijing Normal UniversityBeijingChina
  3. 3.NAAM-Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations