Advertisement

Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system

  • Nanrun ZhouEmail author
  • Xingyu Yan
  • Haoran LiangEmail author
  • Xiangyang Tao
  • Guangyong LiEmail author
Article
  • 174 Downloads

Abstract

A quantum representation model for multiple images is firstly proposed, which could save more storage space than the existing quantum image representation models and allow quantum hardware to encrypt an arbitrary number of images simultaneously. Moreover, the definition and the quantum circuit of quantum 3D Arnold transform are given based on the proposed quantum representation model for multiple images. Furthermore, a novel quantum multi-image encryption scheme is devised by combining quantum 3D Arnold transform and quantum XOR operations with scaled Zhongtang chaotic system. Theoretically, the proposed quantum image encryption scheme could encrypt many images simultaneously. Numerical simulations and theoretical analyses demonstrate that the proposed quantum multi-image encryption scheme outperforms both its classical counterparts and the existing typical quantum image encryption algorithms in terms of security, robustness, encryption capacity and computational complexity.

Keywords

Quantum representation model for multiple images Quantum multi-image encryption scheme Quantum 3D Arnold transform Scaled Zhongtang chaotic system Quantum XOR operation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061 and 61262084), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social Security of Jiangxi Province, the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20171BAB202002).

References

  1. 1.
    Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)Google Scholar
  5. 5.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fijany, A., Williams, C.P.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quantph/9809004 (1998)
  7. 7.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing (STOC 1996), pp. 212–219. ACM, New York (1996)Google Scholar
  8. 8.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos, CA (1994)Google Scholar
  9. 9.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)Google Scholar
  10. 10.
    Latorre, J.I.: Image compression and entanglement. arXiv:quantph/0510031 (2005)
  11. 11.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhou, R., Sun, Y., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Caraiman, S., Manta, V.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Tong, X.J., Zhang, M., Wang, Z., Ma, J.: A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4), 2333–2356 (2016)CrossRefGoogle Scholar
  24. 24.
    Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)CrossRefGoogle Scholar
  25. 25.
    Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89(1), 61–79 (2017)CrossRefGoogle Scholar
  26. 26.
    Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)CrossRefGoogle Scholar
  28. 28.
    Li, C., Liu, Y., Xie, T., Chen, M.Z.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Phys. Lett. A 373(15), 1352–1356 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)CrossRefGoogle Scholar
  32. 32.
    Akhshani, A., Akhavan, A., Lim, S.C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Seyedzadeh, S., Norouzi, B., Mosavi, M., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Abd El-Latif, A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A new approach to chaotic image encryption based on quantum chaotic systems, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)CrossRefGoogle Scholar
  35. 35.
    Wang, H., Wang, J., Geng, Y.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 8, 1–21 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15, 2701–2724 (2016)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, Y., Tian, J., Lei, H., Zhou, Y., Shi, W.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inform. Sci. 345, 257–270 (2016)CrossRefGoogle Scholar
  39. 39.
    Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17, 1–24 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(7), 1961–1982 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhou, N.R., Hu, Y.Q., Gong, L.H., Li, G.Y.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 164–186 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Situ, G., Zhang, J.: Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30(11), 1306–1308 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Deepan, B., Quan, C., Wang, Y., Tay, C.: Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 53(20), 4539–4547 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Wang, Q., Guo, Q., Zhou, J.Y.: Double image encryption based on linear blend operation and random phase encoding in fractional Fourier domain. Opt. Commun. 285(21–22), 4317–4323 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    Pan, S.M., Wen, R.H., Zhou, Z.H., Zhou, N.R.: Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimed. Tools Appl. 76(2), 2933–2953 (2017)CrossRefGoogle Scholar
  50. 50.
    Hu, Y.Q., Xie, X.W., Liu, X.B., Zhou, N.R.: Quantum multi-image encryption based on iteration Arnold transform with parameters and image correlation decomposition. Int. J. Theor. Phys. 56(7), 2192–2205 (2017)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Çavuşoğlu, Ü., Kaçar, S., Zengin, A., Pehlivan, I.: A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn. 92(4), 1745–1759 (2018)CrossRefGoogle Scholar
  52. 52.
    Lian, S.G., Mao, Y.B., Wang, Z.Q.: 3D extensions of some 2D chaotic maps and their usage in data encryption. In: International Conference on Control and Automation, 2003. ICCA’03. Proceedings, pp. 819–823. IEEE (2003)Google Scholar
  53. 53.
    Zhou, N.R., Jiang, H., Gong, L.H., Xie, X.W.: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 110, 72–79 (2018)CrossRefGoogle Scholar
  54. 54.
    Chen, J., Zhu, Z., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77(4), 1191–1207 (2014)CrossRefGoogle Scholar
  55. 55.
    Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.Shanghai Key Laboratory of Integrate Administration Technologies for Information Security, School of Cyber SecurityShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Key Laboratory of Photoelectronics and Telecommunication of Jiangxi ProvinceJiangxi Normal UniversityNanchangChina
  4. 4.Department of Electrical and Computer EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations