Advertisement

A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource

  • Na-Na Wu
  • Min JiangEmail author
Article

Abstract

We present a highly efficient scheme for perfect joint remote preparation of an arbitrary \( 2^{n} \)-qubit W state with minimum quantum resource. Both the senders Alice and Bob intend to jointly prepare one \( 2^{n} \)-qubit W state for the remote receiver Charlie. In the beginning, they help the remote receiver Charlie to construct one n-qubit intermediate state which is closely related to the target \( 2^{n} \)-qubit W state. Afterward, Charlie introduces auxiliary qubits and applies appropriate operations to obtain the target \( 2^{n} \)-qubit W state. Compared with previous schemes, our scheme requires minimum quantum resource and least amount of classical communication. Moreover, our scheme has a significant potential for being adapted to remote state preparation of other special states.

Keywords

Joint remote state preparation GHZ states W state Classical communication 

Notes

Acknowledgements

This work is supported by both the National Natural Science Foundation under Grant Nos. 61473199 and 61104002 and SuZhou prospective applied research project under Grant No. SYG201808 and project supported by Key Laboratory of System Control and Information Processing, Ministry of Education,CHINA (Grant No. Scip201804).

References

  1. 1.
    Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetGoogle Scholar
  3. 3.
    Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)ADSGoogle Scholar
  4. 4.
    Chen, Y.A., Chen, S., Yuan, Z.S., Zhao, B., Chuu, C.S., Schmiedmayer, J., Pan, J.W.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4(2), 103–107 (2008)Google Scholar
  5. 5.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multi-party controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 656–665 (2005)Google Scholar
  6. 6.
    Long, L.R., Li, H.W., et al.: Multiparty controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N + 2)-particle non-maximally entangled state as the quantum channel. Sci. China Phys. Mech. 54(3), 484–490 (2011)ADSMathSciNetGoogle Scholar
  7. 7.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSGoogle Scholar
  8. 8.
    Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)ADSGoogle Scholar
  9. 9.
    Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 440–450 (2005)Google Scholar
  10. 10.
    Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)ADSGoogle Scholar
  11. 11.
    Bennett, C.H., Hayden, P., Leung, D.W., et al.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Schulman, L.S.: Remote two-time boundary conditions and special states in quantum mechanics. Phys. Lett. 2(6), 515–530 (1989)Google Scholar
  13. 13.
    Luo, M.X., Deng, Y., Chen, X.B., et al.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12(1), 279–294 (2003)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73(2), 457–460 (2006)Google Scholar
  15. 15.
    Wang, Z.Y., Liu, Y.M., Zuo, X.Q., et al.: Controlled remote state preparation. Commun. Theor. Phys. 52(8), 235–240 (2009)ADSzbMATHGoogle Scholar
  16. 16.
    Wang, J., Yuan, S.H., et al.: Multiparty controlled remote preparation of two particle state. Commun. Theor. Phys. 52(11), 848–852 (2009)ADSzbMATHGoogle Scholar
  17. 17.
    Li, H.W., Long, L.R., et al.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)zbMATHGoogle Scholar
  18. 18.
    Liao, Y.M., Zhou, P., Qin, X.C., He, Y.H., Qin, J.S.: Controlled remote preparing of an Arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61(3), 315–321 (2014)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077–1089 (2015)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65(2), 130–132 (2012)Google Scholar
  21. 21.
    Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)ADSGoogle Scholar
  22. 22.
    Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 579 (2002)Google Scholar
  23. 23.
    Lv, S.X., Zhao, Z.W., Zhou, P.: Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel. Quantum Inf. Process. 17(1), 8 (2018)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Deng, F.G., Gui, L.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)Google Scholar
  25. 25.
    Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)ADSGoogle Scholar
  26. 26.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSGoogle Scholar
  27. 27.
    Dür, W., Briegel, H.J., Cirac, J.I., et al.: Quantum repeaters based on entanglement purification. Phys. Rev. A. 59(1), 169–181 (1998)ADSGoogle Scholar
  28. 28.
    Zhao, Z., Yang, T., Chen, Y.A., et al.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(20), 207901 (2003)ADSGoogle Scholar
  29. 29.
    Simon, C., De, R.H., Afzelius, M., et al.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98(19), 190503 (2007)ADSGoogle Scholar
  30. 30.
    Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 1455–1463 (2011)Google Scholar
  31. 31.
    Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(85), 1915–1923 (2012)Google Scholar
  32. 32.
    Lo, H.K.: Classical communication cost in distributed quantum information processing—a generalization of quantum communication complexity. Phys. Rev. A 62(1), 12313 (1999)Google Scholar
  33. 33.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(63), 94–98 (2000)Google Scholar
  34. 34.
    Wang, Z.Y.: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process. 12(2), 1321–1334 (2013)ADSzbMATHGoogle Scholar
  35. 35.
    Zhou, N.R., Cheng, H.L., Tao, X.Y., et al.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13(2), 513–526 (2014)ADSzbMATHGoogle Scholar
  36. 36.
    Hua, C., Chen, Y.X.: Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication. Quantum Inf. Process. 15(11), 4773–4783 (2016)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Wei, J., Shi, L., Ma, L., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16(10), 260 (2017)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Chen, N., Quan, D.X., Yang, H., et al.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15(4), 1719–1729 (2016)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Wei, J., Shi, L., Zhu, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17(3), 70 (2018)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Wang, Z.Y.: Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states. Quantum Inf. Process. 11(6), 1585–1602 (2012)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Liu, W.T., Wu, W., et al.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 22308 (2012)Google Scholar
  42. 42.
    Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105(3), 030407 (2010)ADSGoogle Scholar
  43. 43.
    Eibl, M., Kiesel, N., et al.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92(7), 077901 (2004)ADSGoogle Scholar
  44. 44.
    Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66(4), 044302 (2002)ADSGoogle Scholar
  45. 45.
    Guo, G.C., Zhang, Y.S.: Scheme for preparation of the W state via cavity quantum electrodynamics. Phys. Rev. A 65(5), 882–886 (2002)Google Scholar
  46. 46.
    Luo, M.X., Chen, X.B., Ma, S.M., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSGoogle Scholar
  47. 47.
    Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)ADSGoogle Scholar
  48. 48.
    Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two qubit states via GHZ-type states. Quantum Inf. Process. 12(7), 2325–2342 (2013)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Zhang, Z.H., Shu, L., Mo, Z.W., et al.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)ADSMathSciNetzbMATHGoogle Scholar
  51. 51.
    Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two-and three photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785–4803 (2016)ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two and three qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Chang, L.W., Zheng, S.H., Gu, L.Z., Xiao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B 23(9), 91–99 (2014)Google Scholar
  54. 54.
    Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796 (2010)ADSGoogle Scholar
  55. 55.
    Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)ADSGoogle Scholar
  56. 56.
    Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818–2821 (1996)ADSGoogle Scholar
  57. 57.
    Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71(6), 362–368 (2005)Google Scholar
  58. 58.
    Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 537–542 (2010)Google Scholar
  59. 59.
    Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 23504–23516 (2010)Google Scholar
  60. 60.
    Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 3355–3362 (2010)Google Scholar
  61. 61.
    Jafarpour, M., Ashrafpouri, F.: Improved entanglement–purification protocol using three Werner states and LOCC. Quantum Inf. Process. 14(2), 607–621 (2015)ADSMathSciNetzbMATHGoogle Scholar
  62. 62.
    Wang, G.Y., Liu, Q., Deng, F.G.: Efficient hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94(3), 032319 (2016)ADSGoogle Scholar
  63. 63.
    Zhang, H., Liu, Q., Xu, X.S., et al.: Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED. Phys. Rev. A 96(5), 052330 (2017)ADSGoogle Scholar
  64. 64.
    Bennett, C.H., Bernstein, H.J., Popescu, S., et al.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)ADSGoogle Scholar
  65. 65.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(6), 140 (2009)Google Scholar
  66. 66.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373(21), 1823–1825 (2009)ADSzbMATHGoogle Scholar
  67. 67.
    Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86(1), 164 (2012)Google Scholar
  68. 68.
    Sheng, Y.B., Zhou, L., Zhao, S.M., et al.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1), 145–149 (2012)Google Scholar
  69. 69.
    Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547–6561 (2014)ADSGoogle Scholar
  70. 70.
    Gao, W.C., Cao, C., Wang, T.J., et al.: Efficient purification and concentration for three-level entangled quantum dots using non-reciprocal microresonators. Quantum Inf. Process. 16(8), 182 (2017)ADSMathSciNetzbMATHGoogle Scholar
  71. 71.
    Ding, S.P., Zhou, L., Gu, S.P., et al.: Electronic entanglement concentration for the concatenated Greenberger–Horne–Zeilinger state. Int. J. Theor. Phys. 56(6), 1–17 (2017)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Zhang, H., Alsaedi, A., Hayat, T., et al.: Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED. Ann. Phys. 391(1), 112–119 (2018)ADSMathSciNetGoogle Scholar
  73. 73.
    Li, Y.: Generation of distributed W-states over long distances. Opt. Commun. 396(1), 19–22 (2017)ADSGoogle Scholar
  74. 74.
    Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5(20), 1765–1768 (2003)Google Scholar
  75. 75.
    Chen, X.B., Zhang, N., Lin, S., Wena, Q.Y., Zhu, F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Opt. Commun. 281(8), 2331–2335 (2008)ADSGoogle Scholar
  76. 76.
    Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)Google Scholar
  77. 77.
    Joo, J., et al.: Quantum secure communication via a W state. J. Korean Phy. Soc. 46(4), 763–768 (2005)Google Scholar
  78. 78.
    Zuo, X.Q., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci. China 52(12), 1906–1912 (2009)Google Scholar
  79. 79.
    Wu, H.Z., Yang, Z.B., Zheng, S.B.: Quantum teleportation and superdense coding via W-class states. Commun. Theor. Phys. 49(4), 901–904 (2008)ADSzbMATHGoogle Scholar
  80. 80.
    Hou, K., Yu, J.Y., Yan, F.: Deterministic remote preparation of a four-qubit entangled W state. Int. J. Theor. Phys. 54(9), 3092–3102 (2015)zbMATHGoogle Scholar
  81. 81.
    Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-qubit W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)ADSzbMATHGoogle Scholar
  82. 82.
    Moreno, M.G.M., Cunha, M.M., Parisio, F.: Remote preparation of W states from imperfect bipartite sources. Quantum Inf. Process. 15(9), 1–11 (2016)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Fu, H., Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Efficient schemes for deterministic joint remote preparation of an arbitrary four-qubit W-type entangled state. Pramana 88(6), 92 (2017)ADSGoogle Scholar
  84. 84.
    Huang, S.: Probability of state preparation using local pure operations. Phys. Lett. A 378(22–23), 1584–1587 (2014)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Lett. A 74(3), 396–401 (2005)MathSciNetGoogle Scholar
  86. 86.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale iontrap quantum computer. Nature 417(6890), 709–711 (2002)ADSGoogle Scholar
  87. 87.
    Du, J.F., Zou, P., Shi, M.J., Leong, C.K.: Observation of geometric phases for mixed states using NMR interferometry. Phys. Rev. Lett. 91(10), 100403 (2003)ADSGoogle Scholar
  88. 88.
    Waseem, M., Irfan, M., Qamar, S.: Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity. Quantum Inf. Process. 14(6), 1869–1887 (2015)ADSzbMATHGoogle Scholar
  89. 89.
    Zhao, Z., et al.: Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon qubits. Phys. Rev. Lett. 94(3), 030501 (2005)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.Key Laboratory of System Control and Information Processing, Ministry of EducationShanghaiPeople’s Republic of China

Personalised recommendations