Advertisement

Quantum coherence as indicators of quantum phase transitions, factorization and thermal phase transitions in the anisotropic XY model

  • Yong-Jia He
  • Jing Zhou
  • Su-Peng Li
  • Zheng-Hang Sun
Article
  • 47 Downloads

Abstract

Quantifying quantum coherence has attracted considerable interests. In the present work, we employ two measures of quantum coherence recently proposed in terms of the skew information and the trace norm, respectively, to investigate the quantum phase transitions (QPTs), factorization in the XY model and the thermal phase transitions (TPTs) in the transverse field Ising model. Two quantifications of quantum nonlocality via the same distance measure of the quantum coherence are also studied for reference. It is shown that two types of quantum coherence are reliable in identifying QPTs and TPTs. However, only the quantum coherence based on the skew information can detect factorization. In addition, the quantum coherence and nonlocality measured via the same distance space have similar finite temperature scaling law, while the quantum coherence based on skew information and trace norm has different finite temperature scaling law. Moreover, the skew-information-based quantum coherence at finite temperature suggests that factorization vanishes when temperature exceeds 0.02 (Boltzmann constant \(k_{B} = 1\)), which is in agreement with the results of the fidelity for states with different distances of spin-pairs.

Keywords

Quantum coherence Quantum phase transition Factorization Thermal phase transition Quantum nonlocality 

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Hu, M.-L., Hu, X., Wang, J.-C., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and quantum correlations. arXiv:1703.01852v2
  5. 5.
    Sachdev, S.: Quantum Phase Transitions. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  6. 6.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to quantum phase transitions. Nature (London) 416, 608 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89, 134101 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-\(\frac{1}{2}\) chain. Phys. Rev. A 82, 012106 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Campbell, S., Richens, J., Gullo, N.L., Busch, T.: Criticality, factorization, and long-range correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Cheng, C.-C., Wang, Y., Guo, J.-L.: One-norm geometric quantum discord and critical point estimation in the XY spin chain. Ann. Phys. 374, 237 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Giorda, P., Allegra, M.: Coherence in quantum estimation. arXiv:1611.02519
  18. 18.
    Chen, J.-J., Cui, J., Zhang, Y.-R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Sha, Y.-T., Wang, Y., Sun, Z.-H., Hou, X.-W.: Thermal quantum coherence and correlation in the extended XY spin chain. Ann. Phys. 327, 3084 (2018)MathSciNetGoogle Scholar
  20. 20.
    Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Giampaolo, S.M., Adesso, G., Illuminati, F.: Theory of ground state factorization in quantum cooperative systems. Phys. Rev. Lett. 100, 197201 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Giampaolo, S.M., Adesso, G., Illuminati, F.: Probing quantum frustrated systems via factorization of the ground state. Phys. Rev. Lett. 104, 207202 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Giorgi, G.L.: Ground-state factorization and quantum phase transition in dimerized spin chains. Phys. Rev. B 79, 060405(R) (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Sachdev, S., Young, A.P.: Low temperature relaxational dynamics of the Ising chain in a transverse field. Phys. Rev. Lett. 78, 2220 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Osterloh, A., Schützhold, R.: Four-concurrence in the transverse XY spin-1/2 chain. Phys. Rev. A 96, 012331 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Quan, H.T., Cucchietti, F.M.: Quantum fidelity and thermal phase transitions. Phys. Rev. E 79, 031101 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measures of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. \(I\). Phys. Rev. A 2, 1075 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. \(II\). Spin-correlation functions. Phys. Rev. A 3, 786 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kinross, A.W., Fu, M., Munsie, T.J., Dabkowska, H.A., Luke, G.M., Sachdev, S., Imai, T.: Evolution of quantum fluctuations near the quantum critical point of the transverse field Ising chain system \(\text{ CoNb }_{2}\text{ O }_{6}\). Phys. Rev. X 4, 031008 (2014)Google Scholar
  35. 35.
    Wu, S.-X., Zhang, J., Yu, C.-S., Song, H.-S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Hu, M.-L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New. J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Yu, X.-D., Zhang, D.-J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. Phys. Rev. A 91, 052311 (2015)CrossRefGoogle Scholar
  42. 42.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. 327, 3084 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Bonfim, O.F.de A., Boechat, B., Florencio, J.: Quantum fidelity approach to the ground-state properties of the one-dimensional axial next-nearest-neighbor Ising model in a transverse field. Phys. Rev. E 96, 042140 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Hu, T., Xue, K., Li, X., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization. Phys. Rev. E 94, 052119 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Tomasello, B., Rossini, D., Hamma, A., Amico, L.: Ground-state factorization and correlations with broken symmetry. EPL 96, 27002 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Heras, U.L., Mezzacapo, A., Lamata, L., Filipp, S., Wallraff, A., Solano, E.: Digital quantum simulation of spin systems in superconducting circuits. Phys. Rev. Lett. 112, 200501 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Mezzacapo, A., Casanova, J., Lamata, L., Solano, E.: Digital quantum simulation of the Holstein model in trapped ions. Phys. Rev. Lett. 109, 200501 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Ren, J., Wang, Y., You, W.-L.: Quantum phase transitions in spin-1 XXZ chains with rhombic single-ion anisotropy. Phys. Rev. A 97, 042318 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    Joyia, W., Khan, K.: Exploring the tripartite entanglement and quantum phase transition in the XXZ+h model. Quant. Inf. Proc. 16, 243 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhang, X.-Z., Guo, J.-L.: Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quant. Inf. Proc. 16, 223 (2017)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Liu, M., Chesi, S., Ying, Z.-J., Chen, X., Luo, H.-G., Lin, Hai-Qing: Universal scaling and critical exponents of the anisotropic quantum Rabi model. Phys. Rev. Lett. 119, 220601 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Hwang, M.-J., Puebla, R., Plenio, M.B.: Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett. 115, 180404 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Xie, Q.-T., Cui, S., Cao, J.-P., Amico, L., Fan, H.: Anisotropic Rabi model. Phys. Rev. X 4, 021046 (2014)Google Scholar
  56. 56.
    Hwang, M.-J., Plenio, M.B.: Quantum phase transition in the finite Jaynes–Cummings lattice systems. Phys. Rev. Lett. 117, 123602 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.Department of PhysicsHuazhong Normal University, Wuhan UniversityWuhanChina

Personalised recommendations